PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uptake of aluminium and basic elements, and accumulation of anthocyanins in seedlings of common buckwheat (Fagopyrum esculentum Moench) as a result increased level of aluminium in nutrient solution

Identyfikatory
Warianty tytułu
PL
Pobieranie glinu i podstawowych pierwiastków oraz nagromadzanie antocyjanów w siewkach gryki zwyczajnej w efekcie zwiększania stężenia gliny w pożywce
Języki publikacji
EN
Abstrakty
EN
The main aim of the present study was to search for the impact of aluminium (Al3+) on uptake and accumulation of aluminium and basic elements, and on the content of anthocyanins in seedlings of common buckwheat (Fagopyrum esculentum Moench). Whole 4-days old buckwheat seedlings or seedlings with excised roots were placed in a growth chamber and exposed to various concentrations of AlCl3 dissolved in Hoagland solution. Aluminium was accumulated in much higher amounts in buckwheat cotyledons and hypocotyls of seedlings incubated after excising roots, than by whole seedlings. High concentration of Al3+ in nutrient solution caused the decrease of potassium uptake in buckwheat hypocotyls and cotyledons. The same high Al3+ concentration caused significant decline of calcium uptake by hypocotyls, but not by cotyledons. Magnesium level in cotyledons and hypocotyls of buckwheat seedlings without roots treated with Al3+ declined, but in case whole seedlings did not undergo such phenomenon. High concentration of Al3+ in nutrient solution caused enhanced biosynthesis and accumulation of anthocyanins in hypocotyls, but not in cotyledons of common buckwheat.
PL
Celem prezentowanych badań była ocena wpływu glinu (Al3+) na jego pobieranie i akumulację oraz podstawowych pierwiastków, a także na zawartość antocyjanów w siewkach gryki zwyczajnej (Fagopyrum esculentum Moench). Całe 4-dniowe siewki lub siewki z odciętymi korzeniami rosły w komorze wzrostu na pożywce Hoaglanda, zawierającej różne stężenia AlCl3. Glin był nagromadzany w znacznie większych ilościach przez liścienie i hipokotyle roślin gryki pozbawionych systemu korzeniowego w porównaniu do całych siewek. Duże stężenie Al3+ w pożywce powodowało hamowanie pobierania potasu przez liścienie i hipokotyle gryki. Takie samo stężenie Al powodowało obniżenie pobierania wapnia przez hipokotyle, ale nie przez liścienie. Poziom magnezu w liścieniach i hipokotylach siewek gryki pozbawionych systemu korzeniowego obniżał się pod wpływem jonów Al3+, ale takie zjawisko nie wystąpiło w roślinach mających system korzeniowy. Wysokie stężenia Al3+ w pożywce powodowało zwiększoną biosyntezę i akumulację antocyjanów w hipokotylach, ale nie w liścieniach gryki zwyczajnej.
Rocznik
Strony
479--488
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
autor
autor
autor
  • Department of Plant Physiology and Genetics, Institute of Biology, Siedlce University of Natural Sciences and Humanities, ul. B. Prusa 12, 08-110 Siedlce, phone +48 25 643 12 32, mhorbowicz@ap.siedlce.pl
Bibliografia
  • [1] Barabasz W., Albińska D., Jaśkowska M. and Lipiec J.: Ecotoxicology of aluminum. Polish J. Environ. Stud., 2002, 11, 199-203.
  • [2] Chang Y.-C., Yamamoto Y. and Matsumoto H.: Accumulation of aluminum in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminum and iron. Plant Cell Environ., 1999, 22, 1009-1017.
  • [3] Yamamoto Y., Kobayashi Y., Devi S.R., Risiishi S., Matsumoto H. and Abe J.: Oxidative stress triggered by aluminum in plant roots. Plant Soil, 2003, 255, 239-243.
  • [4] Thornton F.C., Schaedle M. and Raynal D.L.: Effect of aluminum on the growth of sugar maple in solution culture. Can. J. For. Res., 1986, 16, 892-896.
  • [5] Adamczyk B. and Maciaszek W.: Mobile aluminum in mountain soils of meadow and pasture communities. Polish J. Soil Sci., 1969, 2, 25-32.
  • [6] Wróbel S.: Aluminum in some surface waters in Poland. Roczn. Państw. Zakł. Hig., 1993, 44, 65-72.
  • [7] Kochian L.V.: Cellular mechanisms of aluminum toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46, 237-260.
  • [8] Foy C.D., Chaney R.L. and White M.C.: The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol., 1978, 29, 511-566.
  • [9] Barceló J. and Poschenrieder C.: Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ. Exp. Bot., 2002, 48, 75-92.
  • [10] Rengel Z.: Uptake of aluminium by plant cells. New Phytol., 1996, 134, 389-406.
  • [11] Jones D.L., Kochian L.V. and Gilroy S.: Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol., 1998, 116, 81-89.
  • [12] Rengel Z. and Robinson D.L.: Aluminum effects on growth and macronutrient uptake by annual ryegrass. Agron. J., 1989, 81, 208-215.
  • [13] Taylor G.J., Blamey F.P.C. and Edwards D.G.: Antagonistic and synergistic interactions between aluminum and manganese on growth of Vigna unguiculata at low ionic strength. Physiol. Plant., 1998, 104, 183-194.
  • [14] Ma J.F., Zheng S.J., Hiradate S. and Matsumoto H.: Detoxifying aluminum with buckwheat. Nature, 1997, 390, 569-570.
  • [15] Ma J.F.: Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int. Rev. Cytol., 2007, 264, 225-252.
  • [16] Ma J.F. and Hiradate S.: Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta, 2000, 211, 355-360.
  • [17] Zheng S.J., Ma J.F. and Matsumoto H.: High aluminum resistance in buckwheat. I. Aluminum-induced specific secretion of oxalic acid from root tips. Plant Physiol. 1998, 117, 745-752.
  • [18] Ma J.F., Hiradate S. and Matsumoto H.: High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol., 1998, 117, 753-759.
  • [19] Shen R. and Ma J.F.: Distribution and mobility of aluminum in an Al-accumulating plant, Fagopyrum esculentum Moench. J. Exp. Bot., 2001, 52, 1683-1687.
  • [20] Shen R., Ma J.F., Kyo M. and Iwashita T.: Compartmentation of aluminum in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta, 2002, 215, 394-398.
  • [21] Shen R.F., Chen R.F. and Ma J.F.: Buckwheat accumulates aluminum in leaves but not in seeds. Plant and Soil, 2006, 284, 265-271.
  • [22] Barceló J. and Poschenrieder C.: Phytoremediation: principles and perspectives. Contribut. Sci., 2003, 2, 333-344.
  • [23] Horbowicz M., Grzesiuk A., Dębski H., Koczkodaj D. and Saniewski M.: Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Cracov. Ser. Bot., 2008, 50, 71-78.
  • [24] Mancinelli A.L., Yang C.-P.H., Lindquits P., Anderson R. and Rabino I.: Photocontrol of anthocyanin synthesis. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol., 1975, 55, 251-257.
  • [25] Kim S.J., Maeda T., Marker M.Z., Takigawa S., Matsuura-Endo C., Yamauchi H., Mukasa Y., Saito K., Hashimoto N., Noda T., Saito T. and Suzuki T.: Identification of anthocyanins in the sprouts of buckwheat. J. Agr. Food Chem., 2007, 55, 6314-6318.
  • [26] Borowski K.: Tips and techniques for milestone microwave lab station. An operations overview and practical guide. Edition 1.2i, Milestone Inc., 2003.
  • [27] Marschner H.: Mineral Nutrition of Higher Plants. Academic Press, London 1995
  • [28] Clarkson D.T. and Hanson J.B.: The mineral nutrition of higher plants. Ann. Rev. Plant Physiol., 1980, 31, 239-298.
  • [29] Maathuis F.J.M. and Sanders D.: Mechanisms of potassium absorption by higher plant roots. Physiol. Plant., 1996, 96, 158-168.
  • [30] Zheng S.J., Yang J.L., He Y.F., Zhanh L., You J.F., Shen R.F. and Matsumoto H.: Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol., 2005, 138, 297-303.
  • [31] Piñeros M. and Tester M.: Characterization of a voltage-dependent Ca2+ selective channel from wheat roots. Planta, 1995, 195, 478-488.
  • [32] Piñeros M. and Tester M.: Plasma membrane Ca2+ channels in roots of higher plants and their role in aluminum toxicity. Plant Soil, 1993, 155/156, 119-122.
  • [33] Horbowicz M., Mioduszewska H., Koczkodaj D. and Saniewski M.: The effect of methyl jasmonate and phenolic acids on growth of seedlings and accumulation of anthocyanins in common buckwheat (Fagopyrum esculentum Moench). Acta Agrobot., 2009, 62, 49-56.
  • [34] Horbowicz M., Wiczkowski W., Koczkodaj D. and Saniewski M.: Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol. Hungar., 2011, 62, 265-278.
  • [35] Harborne J.B.: Spectral methods of characterizing anthocyanins. Biochem. J., 1958, 70, 22-28.
  • [36] Takeda K., Yamashita T., Takahashi A. and Timberlake C.F.: Stable blue complexes of anthocyanin-aluminum-3-p-coumaroyl- or 3-caffeoyl-quinic acid involved in the blueing of Hydrangea flower. Phytochemistry, 1990, 29, 1089-1091.
  • [37] Foy C.D. and Brown J.C.: Toxic factors in acid soils. II. Differential aluminum tolerance of plant sciences. Soil Sci. Soc. Am. Proc., 1964, 28, 27-32.
  • [38] Mioduszewska H., Robakowska A., Klocek J. and Horbowicz M.: Level of anthocyanins in seedlings of common buckwheat cv. Hruszowska grown in nutrient solution contained various concentration of phosphate. Pamięt. Puław., 2009, 149, 57-64 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0057-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.