PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ansys polyflow software use to optimize the sheet thickness distribution in thermoforming process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermoforming is a manufacturing process widely used to produce thin thermoplastic parts from small blister packs to display AAA size batteries to large skylights and aircraft interior panels. In this paper was presented numerical simulation of the inflation phase of a thermoforming process under which a thin polymer sheet is deformed into a mould under the action of applied pressure. Two cases of blowing sheet were considered. In the first, preapproved on the basis of a constant sheet temperature (T = 150°C) examined the distribution of the container wall thickness. There has been excessive thinning (about 0,2mm) in the cup corners after forming. Also simulation it was made for other constant temperature (160, 170, 180, 190 and 200°C). On this basis, was made optimization of the sheet profile temperature (in range 150÷200°C) to remove excessive thinning. Noted was a significant effect of the initial sheet temperature distribution on the final wall thickness distribution in the considered container. The Ansys Polyflow procedure of optimizing the sheet temperature distribution allowed eliminating excessive thinning in the considered cup walls corners.
Rocznik
Strony
215--220
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • University of Technology and Life Sciences in Bydgoszcz ul. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland tel.: +48 52 3408224, fax: +48 52 3408222, karolpep@utp.edu.pl
Bibliografia
  • [1] Berdyshev, B., Hosseini, H., Modeling of deformation processes in vacuum thermoforming of a pre-stretched sheet, Polymer-Plastics Technology and Engineering, 45, pp. 1357–1362, 2006.
  • [2] Bourgin, P., Cormeau, I., A first step towards the modeling of the thermoforming of plastic sheets, Journal of materials processing technology, 54, pp. 1–11. 1995.
  • [3] Carlone, P., James, L., Finite element analysis of the thermoforming manufacturing process using the hyperelastic Mooney-Rivlin model, Springer-Verlag Berlin Heidelberg, pp. 794–803, 2006.
  • [4] Debbaut, B., Prediction of extensions in 3-D blow moulding simulation, Journal of Reinforced Plastics and Composites, 16, pp. 1255–1262, 1997.
  • [5] Debbaut, B., Homerin, O., A comparison between experiments and predictions for the blow molding of an industrial part, Polymer Engineering and Science, 39, pp. 1812–1822, 1999.
  • [6] Dong, Y., Lin, R. J., Finite element simulation on thermoforming acrylic sheets using dynamic explicit method, Polymers & Polymer Composites, 14, pp. 307–328, 2005.
  • [7] Klein, P., Fundamentals of Plastics Thermoforming, Morgan & Claypool Publishers, Ohio University, 2009.
  • [8] Piecyk, L., Termoformowanie wyrobów wielkogabarytowych, Laboratorium, 7, pp. 27–31, 2006.
  • [9] Sykutera D., Pepliński K.: Zastosowanie oprogramowania Ansys-Polyflow do wspomagania wytwarzania opakowań formowanych próżniowo. Inżynieria i Aparatura Chemiczna 1/2011.
  • [10] Warby, M. K., Whiteman, J. R., Finite element simulation of thermoforming processes for polymer sheets, Mathematics and Computers in Simulation, 61, pp. 209–218, 2003.
  • [11] Wiesche, S., Industrial thermoforming simulation of automotive fuel tanks, Applied Thermal Engineering. 24, pp. 2391–2409, 2004.
  • [12] Żenkiewicz, M., Szach, A., Wybrane problemy termoformowania materiałów polimerowych, Polimery, 55, pp. 337–350, 2010.
  • [13] Ansys Polyflow User’s Guide, Ansys Inc., 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0056-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.