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Abstract 

 

A proper design of compression ring secures its correct and long term operation. A good ring contact to cylinder 

wall along the whole circumference with the required distribution of circumferential pressure at the same time are 

symptoms of this correctness. The analytical methods and more often numerical ones are applied when designing 

piston rings. A characteristic parameter most often designated as K, which facilitates the comparison of different ring 

designs and allows for anticipation of its elastic properties is used at the stage of ring design. The following study 

presents the most significant mathematical relations between the ring geometry and forces that are acting on ring, and 

shows that results of force operation could differ relative to the point of their application. Relations between the 

tangential force and the circumferential one have been established as well. For three compression rings verifying tests 

consisting in definition of selected parameters using analytical and numerical methods have been carried out. The 

analysis of attained results and trials on explanation of noticed discrepancies are presented in the study as well. 
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1. Introduction 

 

The compression ring should touch the cylinder wall with all its circumference and move over 

a layer of lubricating oil in order to serve its purpose, i.e. to keep the combustion chamber tight, to 

transfer the piston heat and to distribute lubricating oil. According to the hydrodynamic theory of 

lubrication the formation of oil layer separating working surfaces of ring and cylinder requires a 

selection of adequate wall pressure as well as micro- and macrogeometry of collaborating surfaces. 

It is generally considered that thanks to suitable selection of these parameters a period of ring 

reliable operation could be significantly extended. Other measures helpful in extension of ring life 

are: application of ring face cover with chromium-ceramic covers or appropriate formation of 

collaborating surface, e.g. deep honing of cylinder liner or chrome plated ring grooves on piston.  

 

2. Characteristic parameters of compression ring 

 

Characteristic parameters of ring geometry (see Fig. 1) and of ring material (represented by 

e.g. the modulus of elasticity) are used for definition of ring design. In case of modern 



compression rings the range of those values is very wide.  

For example, the diameters of contemporary engine piston rings could range from dozen 

millimeters or so to more than meter while the axial width – from a fraction to a few dozens 

millimeters.  

 
a)       b) 

Fig. 1. Sketch of free and clamped compression ring (a) and a ring loaded with tangential Ft  

and radial Q force (b) 

 

The efforts on definition of an optimum design of compression ring, in particular on relations 

between ring geometry and its elastic properties have been carried out for years. The most 

considerable progress was done in the 40-ties of the last century, when so called ring free form 

was established using analytical formulas. A parameter that could facilitate a comparison of 

various rings was searched for as well. It was accepted that the quantity further called a ring 

characteristic parameter and given by the following formula 
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satisfies these demands. In this formula rm denotes a radius of neutral layer while po is a constant 

circumferential pressure (resulting from ring installation in liner).  

The way the radius of neutral layer rm was determined needs explanation. If the rectangular 

ring outer radius was denoted by rz (see Fig.1a) and the inner radius by rw then the radius of neutral 

layer is given by the formula: 
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For majority of piston ring calculations the simplified form of the Eq. (2) reduced to  

 

 ( )pm gdr −⋅= 5.0  (3) 

 



is used which means that the neutral layer agrees with the cross-section center of gravity. 

Eq. (3) could be obtained as a result of the expansion of function „ln (rz/rw)” in an exponent series 

taking into consideration only the first term of this expansion. 

Using a well-known relation between the tangential force Ft (this force acts at the ring gap 

tangentially to the neutral layer) and the circumferential wall pressure po ([9]) 
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one can obtain other forms of the Eq. (1) (more important ones are presented in Table 1).  

 
Tab. 1. Formulas for calculations of the ring characteristic parameter K 

 

1 2 3 4 5 

3

12













=

p

mo

g

r

E

p
K  

IE

rhp
K

mpo

⋅

⋅⋅
=

3

 
IE

rF
K mt

⋅

⋅
=

2

 
E

F

gh

gd
K t

pp

p

3

)(3

⋅

−⋅
=  

mr

m
K

⋅⋅
=

π3
 

Terms as in Fig. 1, another ones: I – moment of inertia, given by the formula 12/3
pp ghI ⋅=  for a ring of 

rectangular cross-section 

 

As verifying calculations show for a compression ring the parameter K takes the value within 

the range from 0.01 to 0.05, independently on dimensions and material properties. 

When trying to define the properties of ring which data are unknown, the formula written in 

column 5 of the Table 1 linking the K parameter with the clearance of ring gap might be useful 

(see dimension m in Fig. 1a). To define this one should assume that the ring is a curved rod of 

satisfactorily big radius rm relatively to the radial wall thickness gp. The change in ring gap, i.e. the 

displacement of ring free ends, could be defined as the derivative of rod potential energy V relative 

to the force P (according to the Castigliano’s theorem): 
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An increase in potential energy dV caused by bending moment M(φ) along the increase of 

angle dφ equals (as very small, other forces and moments acting upon the ring are omitted):  
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Fig. 2. A schematic draw used for 

determination of a displacement of 

ring ends loaded by the force P 



A potential energy contained in ring within the section defined by the angle (0 – φ1) equals: 
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and the total displacement of a point subjected to the force operation searched for is:  
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Remembering that the total size of clearance at ring gap is 2
.
fy, a formula linking the K 

parameter of ring with the total clearance m has been obtained: 
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For a known geometry of ring (and using the formulas presented in Table 1) one can estimate a 

hypothetic value of ring pressure po or tangential force Ft on purely computational way (however 

the knowledge on properties of ring material given by the Young modulus E is indispensable). 

 

2. Relations linking the tangential and radial force 

 

To determine the ring elastic properties the measuring devices of different construction are 

being used (e.g. those presented in [8]) which allow to measure a value of tangential Ft or radial Q 

force. Knowing one of the forces the another one can be determined according to the formula 

tFQ ⋅= κ  (literature gives various values of κ within the range from 2 to 3). In order to assume the 

factor suitable for certain measurements one should take into consideration the force location and 

the results of force operation as well. During measurements the force Ft can load the ring evenly 

(by the clamping band – see Fig. 3a) or on the ring end at the point situated on its neutral layer 

(Fig. 3b). The value of force should be selected so as to bring about the ring ends as near as gap 

clearance lz. On some measuring devices the direction of tangential force is moved from the 

neutral layer to the ring outer surface (as in Fig. 3a – the force is marked as Ft,d) which affects the 

measured value. The following relation takes place between the forces mentioned: 
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a)    b)   c)   d) 

Fig. 3. Selected cases of ring load; the Ft,d force tightens the ring by the clamping band to the gap of l = lz (a), the Ft 

force works tangentially to the neutral layer and clamps the ring to the gap of l = lz (b), the radial force Q1 works on 

the ring diameter and clamps the ring to the gap of l = lz (c), ), the radial force Q2 works on the ring  

                                               diameter and clamps the ring to the gap of ld = d (d)  



On the other hand the radial force should be selected so as to make ring ends come closer to 

the distance of lz (the Q1 force in Fig. 3c) or cause a partial ring closure to the value of  

ld = d (the Q2 force in Fig. 3d). Moreover, it should be mentioned that ring deformation occurs in 

all cases presented (except the use of clamping band), which additionally affects the variability of 

the κ factor. 

In order to avoid an erroneous selection of the κ parameter the author took a trial to verify its 

value and variability dependently on analyzed case. A verification of the factor κ1 value linking 

the Ft and Q1 forces (for a case presented in Fig. 3c) was carried out at the beginning. 

 

According to the sketch in Fig. 4 the load of force Q1 brings about a displacement of point A’ 

to A (fA is the vertical component of this section) and of point B’ to B (its vertical component is 

fB) at the same time. The length of section s does not change (for simplicity of sketch the lz slit was 

not marked because is far shorter than the fB section) because the right hand side of ring is not 

subjected to load. Remembering that the same displacement fB should be brought about by the 

tangential force Ft acting at the ring gap, a relation linking both forces has been established 

(relation between the force Ft and displacement fB was given in [3], for example). 
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As a solution of (11) the following relation has been obtained: 
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Almost identical value, i.e. 2,632 has been given in [4].  

The Goetze Company gives other values applied when defining relation between Ft and Q2 [5]. 

The value of radial force Q2 should be big enough to make the ring ends come to the distance of  

ld = d (measured on the diameter of ring in cylinder which corresponds to the case presented in  

Fig. 3d). The relation describing this situation, determined experimentally, has the following form  
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Fig. 4. An auxiliary sketch for 

determination of the κ1 parameter  



while the value of κ2 factor should lie within the range from 2.05 to 2.30.  

The form of Eq. (13) shows that the initial value of relation Q2/Ft equal to 2.2667 is 

consecutively reduced by the individual elements of the formula more the higher is the value of 

factor K, oval deformation u and radial wall thickness gp. Test computations carried out for a 

group of rings proved that the relative decrease in this value could reach 0.2 which explains 

reasons why the range of variability for this factor was assumed as it was presented earlier.  

The author decided to perform the check tests of this factor (using analytical formulas and 

mathematical model of ring). 

Expanding ring causes the displacement of point P (visible at an angle of ϕ from the start of 

coordinate system – see Fig. 5) to the point P which corresponds to the ∆x and ∆y  displacements 

relative to the axes. 

 

 

Formulas presented in [1] in the form shown below are recognized as one of the best 

descriptions of the free ring neutral layer, expressing the location of its points relative to axes X 

and Y: 

 

 )1cos
2

sin
sin(cos

2

−++⋅+= ϕ
ϕ

ϕϕϕ K
r

x

m

, (14a) 

 )
2

cossin
cossin

2
(sin

ϕϕ
ϕϕϕ

ϕ
ϕ

⋅
−⋅−+⋅+= K

r

y

m

, (14b) 

 

where K is the characteristic parameter of ring discussed earlier while x/rm and y/rm are the relative 

coordinates of free ring. It results from the Eq. (14) that for the assumptions made initially the 

form of free ring depends only on the K parameter which means that the rings of the same value of 

K parameter have the same relative course of the neutral layer. It should be noted here that the set 

of equations presented below (notation as in Fig. 5) is regarded as the most accurate description of 

ring free form obtained analytically.  
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Information on the way the Eq. (15) was obtained, methods of its solution and perspectives of 

implementation when constructing mathematical models of piston ring one may find in [1, 2]. 

Comparing the ring displacement caused by the force Q2 with the displacement determined 

according to the Eq. (14b) one obtains for the angle of φ = π/2 

 

Fig. 5. Supplement sketch for 

definition of ring free form  



 
IE

Qr
Kr m

m
⋅⋅

⋅⋅
=








+⋅⋅

44
1 2

3ππ
, (16) 

which leads to  

 273.2
42

2 =
+

≈=
π

π
κ

tF

Q
 (17) 

 

after suitable transformations. It is value close to the one given by the formula (13).  

 

3. Application of numerical method to verification of the κκκκ parameter and description of 

compression ring shape  

 

A practical implementation of the analytical relations presented in chapter 2 requires a 

fulfillment of many conditions. For instance, it is being assumed that the ring is installed in an 

ideally round cylinder and touches to the liner with its entire circumference, and the ring wall 

pressure is always even. Analytical relations allow to take into consideration changeability of 

many quantities related to ring geometry and to the material used as well. The numerical methods 

are free of such limitations. In literature, also in domestic one there are descriptions of numerous 

methods that facilitate to design the ring of any form and pressure distribution with any accuracy. 

A method of ring elastic pressure distribution was presented by A. Iskra [1]. The mathematical 

model developed by the author on the basis of the above method can be found in [6]. 

A fragment of the model verification process was shown in [9]. This consists in a comparison 

of computational results accomplished by analytical and numerical methods (implemented to a 

mathematical model of ring). The comparative analyses embraced among other the magnitude of 

ring ends displacement resulted from loading forces. The tests concerned rings of three 

dimensional categories, namely of the automotive engine (the 170A.000 type), of a bulldozer (the 

DTI-817C type), and the marine one (the L48/60CR type). The ring characteristic parameters were 

measured by the author or were obtained from related catalogues (see Table 2). 

Using a mathematical model of piston ring, the forces extorting the displacement of ring 

sections (according to the description in Fig. 3) as well as the κ1 and κ2 parameters were calculated 

and the obtained results were compared with the results of analytical calculations (it was assumed 

that the latter were accurate).  

 
Tab. 2. Technical data of exemplary IC engine compression rings 

 

 

Quantity 

Ring 1 

(automotive 

engine) 

Ring 2 

(engine of 

bulldozer) 

Ring 3 

(marine engine) 

cylinder diameter d              [m] 0.08 0.136 0.480 

ring neutral radius rm             [m] 0.0382 0.0655 0.232 

axial height hp                                 [m] 0.0014 0.003 0.015 

radial thickness gp                       [m] 0.0034 0.005 0.016 

gap clearance m                   [mm] 9.83 14.4 49.0 

Young modulus E                [Pa] 115
.
10

9
 112

.
10

9
 105

.
10

9
 

mean pressure po                  [MPa] 0.180 0.095 0.063 

tangential force Ft                [N] 9.60 18.6 219 

stiffness  EI                          [Nm
2
] 0.527 3.5 537.6 

parameter  K                        [–] 0.0266 0.0229 0.0220 

 

 



Tab. 3. Summary of calculation results obtained analytically and numerically for selected quantities 

 

  Ring 1 Ring 2 Ring 3 
 

Parameter 
 

Formula 
Results 

A 

Results 

N 
δ  

[%] 

Results 

A 

Results 

N 
δ  

[%] 

Results 

A 

Results 

N 
δ  

[%] 

Q1   25.7   49.7   583  

Q2   22.1   42.5   503  

χ1  2.639 2.677 1.439 2.639 2.672 1.251 2.639 2.657 0.682 

χ2  2.273 2.302 1.276 2.273 2.284 0.484 2.273 2.296 1.011 

 

As it outcomes from the results summarized in Table 3, there is a high agreement between 

parameters obtained with analytical (A) and numerical (N) methods, because the relative 

differences do not exceed 2%. The condition valid for analytical calculations (about keeping the 

round form by ring) was not fulfilled in numerical calculations which seems to be a probable 

reason for these differences. 

 

4. Evaluation of ring deformation under the load of external forces  

 

The shape of ring loaded with the forces Ft, and Q1 and Q2 differs considerably from the circle. 

Fig. 6 shows the courses of circumferential relative change in ring radius – calculated analytically 

– for selected load cases (cases summarized in Fig. 3). The ring deformations compared with the 

case of even load could reach several percent depending on load case and the highest ones are 

those for the load of Q2 force (line 4). It should be emphasized that despite similar shape the 

courses obtained for various rings differ one from another (Fig. 7). It means that individual 

characteristic course should be determined for each ring.  

 

a)       b) 

c) 

Fig. 6. Courses of the circumferential 

relative change in ring radius for selected 

load cases on following engines: a – 

170A.000 , 

 b – DTI-817C, c – L48/60CR; 1 – constant 

load, 2 – loaded with the Ft force, 3 – loaded 

with the Q1 force, 4 – loaded with the Q2 

force  



a)       b) 

Fig. 7. Courses of the circumferential relative change in ring radius loaded with forces Q1 (a) and Q2 (b) for the 

rings of following engines: 1 – 170A.000, 2 – DTI-817C, 3 – L48/60CR 

 

Presented analyses and defined relations concern above all the situations relative to the tests of 

compression rings outside engine but they can be also useful during ring design process and 

analyses of its behaviour when moving on a running engine.  
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