PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porous biomaterial for orthopaedic implants based on titanium alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium and its alloys are widely used as biomaterials for orthopaedic applications. Research connected with their best corrosion and wear resistance, biocompatibility and bioactivity are still being conducted. The current research is also focused on the design and manufacturing of the porous materials based on e.g. Ti-13Nb-13Zr alloy, which can be applied for implants. One of the most effective manufacturing methods of the porous materials are powder metallurgy techniques. The aim of the presented work was the design of powder preparation procedure and design a parameters of pressing and sintering processes in order to obtain the porous structure from Ti-13Nb-13Zr alloy. Investigation results of the microstructure morphology, pore size and porosity of the obtained porous material on the base Ti-13Nb-13Zr alloy in dependence of the pressing and sintering parameters are also shown and discussed.
Słowa kluczowe
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Gdansk University of Technology Faculty of Mechanical Engineering, Department of Manufacturing Engineering and Automation, Gdansk, Poland, tseramak@pg.gda.pl
Bibliografia
  • 1. Robertson D.M., Pierre L., Chahal R.: Preliminary observations of bone ingrowth into porous materials. J. Biomed. Mater. Res. (1976), 10, 335–344.
  • 2. Cameron H.U., Macnab I., Pilliar R.M.: A porous metal system for joint replacement surgery. Int. J. Artif. Organs (1978), 1, 104–109.
  • 3. Head W.C., Bauk D.J., Emerson Jr R.H.: Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin. Orthop. (1995), 85–90.
  • 4. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials (2006), 27, 2651-2670.
  • 5. Bobyn J.D., Glassman A.H., Goto H, Krygier J.J., Miller J.E., Brooks C.E.: The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin. Orthop. Relat. Res. (1990), 196–213.
  • 6. Bobyn J.D., Mortimer E.S., Glassman A.H., Engh C.A., Miller J.E., Brooks C.E.: Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin. Orthop. (1992), 79–96.
  • 7. Pilliar R.M., Cameron H.U., Binnington A.G., Szivek J., Macnab I.: Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J. Biomed. Mater. Res. (1979), 13, 799–810.
  • 8. Engh C.A., Bobyn J.D.: Principles, techniques, results, and complications with a porous-coated sintered metal system. Instr. Course Lect. (1986), 35, 169–183.
  • 9. Sychterz C.J., Topoleski L.D., Sacco M, Engh Sr C.A.: Effect of femoral stiffness on bone remodeling after uncemented arthroplasty. Clin. Orthop. Relat. Res. (2001), 218–227.
  • 10. Otani T., Whiteside L.A.: Failure of cementless fixation of the femoral component in total hip arthroplasty. Orthop. Clin. North Am. (1992), 23, 335–346.
  • 11. Weber J.N., White E.W.: Carbon-metal graded composites for permanent osseous attachment of non-porous metals. Mater. Res. Bull. (1972), 7(9), 1005–1016.
  • 12. Branemark P.I.: Osseointegration and its experimental background. J. Prosthet. Dent. (1983), 50, 399–410.
  • 13. Klawitter J.J., Weinstein A.M.: The status of porous materials to obtain direct skeletal attachment by tissue ingrowth. Acta Orthop. Belg. (1974), 40, 755–765.
  • 14. White E.W., Weber J.N., Roy D.M., Owen E.L., Chiroff R.T., White R.A.: Replamineform porous biomaterials for hard tissue implant applications. J. Biomed. Mater. Res. (1975), 9, 23–27.
  • 15. Spector M., Michno M.J., Smarook W.H., Kwiatkowski G.T.: A highmodulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants. J. Biomed. Mater. Res. (1978), 12, 665–677.
  • 16. Klawitter J.J., Bagwell J.G., Weinstein A.M., Sauer B.W.: An evaluation of bone growth into porous high density polyethylene. J. Biomed. Mater. Res. (1976), 10, 311–323.
  • 17. Cestero Jr H.J., Salyer K.E., Toranto I.R.: Bone growth into porous carbon, polyethylene, and polypropylene prostheses. J. Biomed. Mater. Res. (1975), 9, 1–7.
  • 18. Homsy C.A., Cain T.E., Kessler F.B., Anderson M.S., King J.W.: Porous implant systems for prosthesis stabilization. Clin. Orthop. (1972), 89, 220–235.
  • 19. Sauer B.W., Weinstein A.M., Klawitter J.J., Hulbert S.F., Leonard R.B., Bagwell J.G.: The role of porous polymeric materials in prosthesis attachment. J. Biomed. Mater. Res. (1974), 8, 145–153.
  • 20. Hirschhorn J., McBeath A., Dustoor M.: Porous titanium surgical implant materials. J. Biomed. Mater. Res. Symp. (1971), 2, 49–67.
  • 21. Galante J., Rostoker W., Lueck R., Ray R.D.: Sintered fiber metal composites as a basis for attachment of implants to bone. J. Bone Joint Surg. Am. (1971), 53, 101–114.
  • 22. Hahn H., Palich W.: Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J. Biomed. Mater. Res. (1970), 4, 571–577.
  • 23. Karagienes M.: Porous metals as a hard tissue substitute. I. Biomedical aspects. Biomater. Med. Dev. Artif. Organs (1973), 171–181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0049-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.