PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biocompatibility and Bioactivity of Load-Bearing Metallic Implants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation; obtaining of a Ti alloy with designed porosity; developing of an oxidation technology resulting in high corrosion resistance and bioactivity; developing of technologies for hydroxyapatite (HA) deposition aimed at composite bioactive coatings; developing of technologies of precipitation of the biodegradable core material placed within the pores. The examinations of degradation of Ti implants are carried out in order to recognize the sources of both early allergies and inflammation, and of long term degradation. The theoretical assessment of corrosion is made assuming three processes: electrochemical dissolution through imperfections of the anodic oxide layer, diffusion of metallic ions through the oxide layer, and dissolution of oxides themselves. In order to increase the biocompatibility, the toxic elements, aluminium (Al) and vanadium (V) are eliminated. The experiments have shown that titanium – zirconium – niobium (Ti-Zr-Nb) alloy may be a such a material which can also be prepared by both powder metallurgy (P/M) technique and selective laser melting. The porous (scaffold) Ti-Zr-Nb alloy is now obtained by powder metallurgy, classical and with space holders used before melting and decomposed, or remained during melting and removed by subsequent water dissolution. The oxidation of porous materials is performed either by electrochemical technique in special electrolytes or by chemical and/or hydrothermal method in order to obtain the optimal oxide layer well adjacent to an interface, preventing the base metal against corrosion and bioactive because of its nanotubular structure, permitting injection of some species into the pores. The Ca, O and N ion implantation or deposition of zirconia sublayers may be used to increase the biocompatibility, bioactivity and corrosion resistance. The HA coating obtained by either electrophoretic, biomimetic or by sol-gel deposition should result in gradient structure similar to bone structure, possessing high adhesion strength. The core material of the porous material should result in a biodegradable material, allowing slower dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, sustaining the mechanical strength close to that of non-porous material.
Rocznik
Strony
21--31
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
autor
  • Technical University of Gdansk, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, azielins@pg.gda.pl
Bibliografia
  • 1. http://silver.neep.wisc.edu/~lakes/BME315N3.pdf.
  • 2. Zieliński A.: Nowoczesne biostopy tytanu i kierunki ich rozwoju. Materiały i Technologie (Materials and Technologies) 2 (2004) 242-247.
  • 3. Świeczko-Żurek B.., Ziemlański A.: Allergies to implant metal compounds. Advances in Materials Science No. 3, 9 (2009) 39-46.
  • 4. Malluche H.H.: Aluminium and bone disease in chronic renal failure. Nephrology Dialysis Transplantation 17 (2002) 21-24.
  • 5. Domingo J.L.: Vanadium and diabetes. What about vanadium toxicity? Molecular and Cellular Biochemistry 203 (2000) 185-187.
  • 6. Sobieszczyk S.: Optimal features of porosity of Ti alloys considering their bioactivity and mechanical properties. Advances in Materials Science No. 2, 10 (2010) 20-30.
  • 7. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous materials for use in orthopaedic applications. Biomaterials 27 (2006) 2651-2670.
  • 8. Okazaki Y., Gotoh E., Manabe T., Kobayashi K.: Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 28 (2004) 5913-6025.
  • 9. M. Koike and H. Fuji, The corrosion resistance of pure titanium in organic acids, Biomaterials 22 (2001) 2931-2936.
  • 10. M.A. Khan, R.L. Williams and D.F Williams, In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17 (1996) 2117-2126.
  • 11. Y. Okazaki and E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials 26 (2005) 11-21.
  • 12. Landor I., Vavrik P., Sosna A., Jahoda D., Hahn H., Daniel M.: Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch. Orthop. Trauma Surg. 127 (2007) 81-89.
  • 13. Burstein G.T., Liu C., Souto R.M.: The effect of temperature on the nucleation of corrosion pits on titanium in Ringer`s physiological solution. Biomaterials 26 (2005) 245-256.
  • 14. Browne M., Gregson P.J.: Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21 (2000) 385-392.
  • 15. Zieliński A., Sobieszczyk S.: Corrosion of titanium biomaterials, mechanisms, effects and modelisation. Corrosion Reviews 26 (2008) 1-22.
  • 16. Sobieszczyk S.: Self-organised nanotubular oxide layers on Ti and Ti alloys. Advances in Materials Science No. 2, 9 (2009) 25-41.
  • 17. Carama O.R., Pauli C.P., Giordano M.C.: Potentiodynamic behavior of mechanically polished titanium electrodes. Electrochim. Acta 29 (1984) 1111-1117.
  • 18. Felske A., Plieth W.J.: Raman spectroscopy of titanium dioxide layers. Electrochim. Acta 34 (1989) 75-77.
  • 19. Głuszek J., Masalski J., Furman P., Nitsch K.: Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18 (1997) 789-794.
  • 20. Nishiguchi S., Kato H., Fujita H., Oka M., Kim H.-M., Kokubo T., Nakamura T.: Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22 (2001) 2525-2533.
  • 21. Wang X.-X., Hayakawa S., Tsuru K., Osaka A.: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23 (2002) 1353- 1357.
  • 22. Takeuchi M., Abe Y., Yoshida Y., Nakayama Y., Okazaki M., Akagawa Y.: Acid pretreatment of titanium implants. Biomaterials 24 (2003) 1821-2827.
  • 23. Sul Y.-T., Johansson C.B., Petronis S., Krozer A., Jeong Y., Wennerberg A., Albrektsson T.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configuration, surface roughness, crystal structure and chemical composition. Biomaterials 23 (2002) 491-501.
  • 24. Frauchiger V.M., Schlottig F., Gasser B., Textor M.: Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25 (2004) 593-606.
  • 25. MacDonald D.E., Rapuano B.E., Deo N., Strancik M., Somasundaran P., Boskey A.L.: Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 25 (2004) 3135-314.
  • 26. Yang B., Uchida M., Kim H.-M., Zhang H., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treat ment. Biomaterials 25 (2004) 1003-1010.
  • 27. Felske A., Plieth W.J.: Raman spectroscopy of titanium dioxide layers. Electrochim. Acta 34 (1989) 75-77.
  • 28. Zhu X., Kim K.-H., Jeong J.: Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials 22 (2001) 2199-2206.
  • 29. Krasicka-Cydzik E.: Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions. Corrosion Sci. 46 (2004) 2487-2502
  • 30. Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Materials Science No. 1, 10 (2010) 19-28.
  • 31. Sobieszczyk S., Zieliński A.: Coatings in arthroplasty. Advances in Materials Science No. 4, 8 (2008) 35-54.
  • 32. Mohammadi Z., Ziaei-Moayyed A.A., Sheikh-Mehdi Mesgar A.: Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Applied Surface Science 253 (2007) 4960-4965.
  • 33. Stoch A., Jastrzębski W., Długoń E., Lejda W., Trybalska B., Stoch G.J., Adamczyk A.: Sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. Journal of Molecular Structure 744-747 (2005) 633-640.
  • 34. Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research B 249 (2006) 723-725.
  • 35. Giavaresi G., Ambrosio L., Battistion G.A., Casellato U., Gerbasi R., Finia M., Aldini N.N., Martini L., Rimondini L., Giardino R.: Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour depostion: an in vivo study. Biomaterials 25 (2004) 5583-5591.
  • 36. Lee I-S., Zhao B., Lee G-H., Choi S-H., Chung S-M.: Industrial application of ion beam assisted deposition on medical implants. Surface and Coatings Technology 201 (2007) 5132-5137.
  • 37. Kim H., Camata R.P., Lee S. i in.: Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta Mater. 55 (2007) 131-139.
  • 38. Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. Journal of Material Science 41 (2006) 8138-8143.
  • 39. Zheng X., Huang M., Ding Ch.: Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21 (2000) 841-849.
  • 40. Khor K.A., Gu Y.W., Pan D., Cheang P.: Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials 25 (2004) 4009-4017.
  • 41. Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite +titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25 (2004) 4393-4403.
  • 42. Chou B-Y., Chang E.: Plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 second phase and ZrO2 intermediate layer. Surface and Coating Technology 153 (2002) 84-92.
  • 43. Fu L., Khor K.A., Lim J.P.: The evaluation of powder processing on microstructure and mechanical properties of hydoxyapatite (HA)/yttria stabilized zirconia (YSZ) composite coatings. Surface and Coatings Technology 140 (2001) 263-268.
  • 44. Liao S., Watari F., Zhu Y., Uo M., Akasaka T., Wang W., Xu G., Cui F.: The degradation of the three layered nano-caronated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dental Materials 23 (2007) 1120-1128.
  • 45. Wang L., Li Ch.: Preparation and physicochemical properties of a novel hydroxyapatite/chitosan – silk fibroin composite. Carbohydrate Polymers 68 (2007) 740-745.
  • 46. F.L.S., Borges Ch.S., Branco J.R.T., Pereira M.M.: Structural analysis of hydroxyapatite/bioactive glass composite coatings obtained by plasma spray processing. Journal of Non-Crystalline Solids 247 (1999) 64-68.
  • 47. Jansen J.A., Vehof J.W.M., Ruhe P.Q., et al.: Growth factor-loaded scaffolds for bone engineering. Journal of Controlled Release 101 (2005) 127-136.
  • 48. Eliaz N., Sridhar T.M., Kamachi Mudali U., Raj B.: Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic. Surface Engineering No. 3, 21 (2005) 238-242.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0049-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.