PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pole-free vs. stable-pole designs of minimum variance control for nonsquare LTI MIMO systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper takes advantage of nonuniqueness of the inverse problem for nonsquare transfer function matrices of multivariable systems in order to select such poles, if any, of a minimum variance control system that can either guarantee its closed-loop stability or provide (a sort of) robustness to the control system. As a result, new pole-free and stable-pole MVC designs are offered for nonsquare LTI MIMO systems, the most general of them utilizing the Smith-factorization approach and the so-called control zeros. The new designs contribute to an illustration and extension of the Davison’s theory of (nonsquare) minimum phase systems, in that the lack or presence of (appropriate) control zeros can provide a required performance to the MVC system. Simulation examples in the Matlab/Simulink environment confirm the potential of the control zeros and their impact on redefinition of the minimum phase property.
Rocznik
Strony
201--211
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • Institute of Control and Computer Engineering, Opole University of Technology, 31 Sosnkowskiego St., 45-272 Opole, Poland, w.hunek@po.opole.pl
Bibliografia
  • [1] S. Bańka and P. Dworak, “Efficient algorithm for designing multipurpose control systems for invertible and right-invertible MIMO LTI plants”, Bull. Pol. Ac.: Tech. 54 (4), 429–436 (2006).
  • [2] K.J. Latawiec, The Power of Inverse Systems in Linear and Nonlinear Modeling and Control, Opole University of Technology Press, Opole, Poland, 2004.
  • [3] R.A.J. de Vries, “Robust control through signal constraints with application to predictive control”, PhD Thesis, Delft University of Technology, Delft, 2006.
  • [4] U. Borisson, “Self-tuning regulators for a class of multivariable systems”, Automatica 15 (2), 209–215 (1979).
  • [5] L. Keviczky and J. Hetthessy, “Self-tuning minimum variance control of MIMO discrete time systems”, Automatic Control Theory and Applications 5 (1), 11–17 (1977).
  • [6] H.N. Koivo, “A multivariable self-tuning controller”, Automatica 16 (4), 351–366 (1980).
  • [7] T.J. Moir and M.J. Grimble, “Weighted minimum variance controller for nonsquare multivariable systems”, IEEE Trans. on Automatic Control 31 (10), 976–977 (1986).
  • [8] K.J. A strom, Introduction to Stochastic Control Theory, Academic Press, New York, 1970.
  • [9] K.J. Astrom and B. Wittenmark, “On self-tuning regulators”, Automatica 9 (2), 185–199 (1973).
  • [10] R.R. Bitmead, M. Gevers, and V. Wertz, Adaptive Optimal Control: The Thinking Man’s GPC, Prentice-Hall, Englewood Cliffs, 1990.
  • [11] E.F. Camacho and C. Bordons, Model Predictive Control, Springer-Verlag, London, 2004.
  • [12] D.W. Clarke and C. Mohtadi, “Properties of generalized predictive control”, Automatica 25 (6), 859–875 (1989).
  • [13] M. Cychowski, Robust Model Predictive Control, VDM Verlag Dr. Muller AG und Co. KG, Berlin, 2009.
  • [14] H. Demircioglu and P.J. Gawthrop, “Multivariable continuous time generalized predictive control (MCGPC)”, Automatica 28 (4), 697–713 (1992).
  • [15] W.P. Hunek, “Control zeros for continuous-time LTI MIMO systems and their application in theory of circuits and systems”, PhD Thesis, Opole University of Technology, Opole, 2003, (in Polish).
  • [16] K.J. Latawiec, Contributions to Advanced Control and Estimation for Linear Discrete-Time MIMO Systems, Opole University of Technology Press, Opole, 1998.
  • [17] J.M. Maciejowski, Predictive Control with Constraints, Prentice-Hall, Harlow, 2002.
  • [18] C.A. Desoer and J.D. Schulman, “Zeros and poles of matrix transfer functions and their dynamical interpretation”, IEEE Trans. Circuits and Systems 21 (1), 3–8 (1974).
  • [19] E.J. Davison and S.H. Wang, “Properties and calculation of transmission zeros of linear multivariable systems”, Automatica 10 (6), 643–658 (1974).
  • [20] E.J. Davison and S.H. Wang, “Remark on multiple transmission zeros of a system”, Automatica 12 (2), 195 (1976).
  • [21] B.A. Francis and W.M. Wonham, “The role of transmission zeros in linear multivariable regulators”, Int. J. Control 22 (5), 657–681 (1975).
  • [22] A.G.J. MacFarlane and N. Karcanias, “Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory”, Int. J. Control 24 (1), 33–74 (1976).
  • [23] T. Kaczorek, Control and Systems Theory, PWN, Warsaw, 1999, (in Polish).
  • [24] H.H. Rosenbrock, State-Space and Multivariable Theory, Nelson-Wiley, New York, 1970.
  • [25] K.J. Latawiec, S. Bańka, and J. Tokarzewski, “Control zeros and nonminimum phase LTI MIMO systems”, Annual Reviews in Control (IFAC J.) 24 (1), 105–112 (2000).
  • [26] W.P. Hunek and K.J. Latawiec, “Minimum variance control of discrete-time and continuous-time LTI MIMO systems – a new unified framework”, Control and Cybernetics 38 (3), 609–624 (2009).
  • [27] K.J. Latawiec and W.P. Hunek, “Control zeros for continuoustime LTI MIMO systems”, Proc. 8th IEEE Int. Conf. on Methods and Models in Automation and Robotics 1, 411–416 (2002).
  • [28] K.J. Latawiec, “Control zeros and maximum-accuracy/ maximum-speed control of LTI MIMO discrete-time systems”, Control and Cybernetics 34 (2), 453–475 (2005).
  • [29] M.H. Amin and M.M. Hassan, “Determination of invariant zeros and zero directions of the system S(A,B,C,E)”, Int. J. Control 47 (4), 1011–1041 (1988).
  • [30] N. Karcanias and B. Kouvaritakis, “The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach”, Int. J. Control 30 (3), 395–415 (1979).
  • [31] B. Porter, “Invariant zeros and zero-directions of multivariable linear systems with slow and fast modes”, Int. J. Control 28 (1), 81–91 (1978).
  • [32] C.B. Schrader and M.K. Sain, “Research on system zeros: a survey”, Int. J. Control 50 (4), 1407–1433 (1989).
  • [33] U. Shaked and N. Karcanias, “The use of zeros and zerodirections in model reduction”, Int. J. Control 23 (1), 113–135 (1976).
  • [34] J. Tokarzewski, Zeros in Linear Systems: a Geometric Approach, Warsaw University of Technology Press, Warsaw, 2002.
  • [35] J. Tokarzewski, “A note on some characterization of invariant zeros in singular systems and algebraic criteria of nondegeneracy”, Int. J. Applied Mathematics and Computer Science 14 (2), 149–159 (2004).
  • [36] K.J. Latawiec, W.P. Hunek, R. Stanisławski, and M. Łukaniszyn, “Control zeros versus transmission zeros intriguingly revisited”, Proc. 9th IEEE Int. Conf. on Methods and Models in Automation and Robotics. 1, 449–454 (2003).
  • [37] K.J. Latawiec, W.P. Hunek, and M. Łukaniszyn, “A new type of control zeros for LTI MIMO systems”, Proc. 10th IEEE Int. Conf. on Methods and Models in Automation and Robotics. 1, 251–256 (2004).
  • [38] W.P. Hunek, “A robust approach to minimum variance control of LTI MIMO systems”, S. Pennacchio, ed., Emerging Technologies, Robotics and Control Systems, Vol. 2, pp. 133–138, International Society for Advanced Research, Palermo, 2007.
  • [39] W.P. Hunek, “Towards robust minimum variance control of nonsquare LTI MIMO systems”, Archives of Control Sciences 18 (1), 59–71 (2008).
  • [40] W.P. Hunek, “Towards robust pole-free designs of minimum variance control for LTI MIMO systems”, S. Pennacchio, ed., Recent Advances in Control Systems, Robotics and Automation, Vol. 1, pp. 168–174, International Society for Advanced Research, Palermo, 2009.
  • [41] W.P. Hunek and K.J. Latawiec, “A Smith factorization approach to robust minimum variance control of nonsquare LTI MIMO systems”, A. Lazinica, ed., New Approaches in Automation and Robotics, pp. 373–380, I-Tech Education and Publishing, Vienna, 2008.
  • [42] W.P. Hunek, K.J. Latawiec, and M. Łukaniszyn, “An inversefree approach to minimum variance control of LTI MIMO systems”, Proc. 12th IEEE Int. Conf. on Methods and Models in Automation and Robotics 1, 373–378 (2006).
  • [43] D. Henrion, “Reliable algorithms for polynomial matrices”, PhD Thesis, Czech Academy of Sciences, Prague, 1998.
  • [44] D. Henrion, Private Communication, 2006.
  • [45] T. Kaczorek, Private Communication, 2005.
  • [46] T. Kaczorek and R. Łopatka, “Existence and computation of the set of positive solutions to polynomial matrix equations”, Int. J. Applied Mathematics and Computer Science 10 (2), 309–320 (2000).
  • [47] W.P. Hunek and K.J. Latawiec, “New results on minimum phase systems”, K. Malinowski and L. Rutkowski, eds., Recent Advances in Control and Automation, Challenging Problems of Science, Control and Automation, pp. 31–40. Academic Publishing House EXIT, Warszawa, 2008.
  • [48] E.J. Davison, “Some properties of minimum phase systems and ’squared-down’ systems”, IEEE Trans. on Automatic Control 28 (2), 221–222 (1983).
  • [49] W.P. Hunek, “A minimum-energy design of robust minimum variance control for nonsquare LTI MIMO systems”, S. Pennacchio, ed., Emerging Technologies, Robotics and Control Systems, pp. 86–90, International Society for Advanced Research, Palermo, 2008.
  • [50] K.J. Latawiec, W.P. Hunek, and M. Łukaniszyn, “New optimal solvers of MVC-related linear matrix polynomial equations”, Proc. 11th IEEE Int. Conf. on Methods and Models in Automation and Robotics 1, 333–338 (2005).
  • [51] W.P. Hunek, K.J. Latawiec, and R. Stanisławski, “New results in control zeros vs. transmission zeros for LTI MIMO systems”, Proc. 13th IEEE IFAC Int. Conf. on Methods and Models in Automation and Robotics 1, 149–153 (2007).
  • [52] F.M. Callier and F. Kraffer, “Proper feedback compensators for a strictly proper plant by polynomial equations”, Int. J. Applied Mathematics and Computer Science 15 (4), 493–507 (2005).
  • [53] J. Klamka, “Stochastic controllability of linear systems with delay in control”, Bull. Pol. Ac.: Tech. 55 (1), 23–29 (2007).
  • [54] H. Martinez-Alfaro and M.A. Ruiz-Cruz, “Discrete optimal control systems design using simulated annealing”, Proc. IEEE Int. Conf. on Systems, Man and Cybernetics 3, 2575–2580 (2003).
  • [55] V. Rumchev and S. Chotijah, “The minimum energy problem for positive discrete-time linear systems with fixed final state”, R. Bru and S. Romero-Vivó, eds., Positive Systems, Vol. 389 of Lecture Notes in Control and Information Sciences, pp. 141–149, Springer-Verlag, Berlin, 2009.
  • [56] T. Kiyota and E. Kondo, “Minimum energy control for multiinput linear digital systems in z-domain”, Proc. American Control Conf. 5, 3907–3911 (1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0048-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.