PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positivity and stability of fractional 2D Lyapunov systems described by the Roesser model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of fractional 2D Lyapunov systems described by the Roesser models is introduced. Necessary and sufficient conditions for the positivity and asymptotic stability of the new class of systems are established. It is shown that the checking of the asymptotic stability of positive 2D fractional Lyapunov systems can be reduced to testing the asymptotic stability of corresponding positive standard 1D discretetime systems. The considerations are illustrated by a numerical example.
Rocznik
Strony
195--200
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] R.P. Roesser, “A discrete state-space model for linear image processing”, IEEE Trans. Autom. Contr. AC-20 (1), 1–10 (1975).
  • [2] E. Fornasini and G. Marchesini, “State-space realization theory of two-dimensional filters”, IEEE Trans. Autom. Contr. AC-21, 484–491 (1976).
  • [3] E. Fornasini and G. Marchesini, “Double indexed dynamical systems”, Math. Syst. Theory 12, 59–72 (1978).
  • [4] J. Kurek, “The general state-space model for a two-dimensional linear digital systems”, IEEE Trans. Autom. Contr. AC-30, 600–602 (1985).
  • [5] T. Kaczorek, “Reachability and controllability of non-negative 2D Roesser type models”, Bull. Pol. Ac.: Tech. 44 (4), 405–410 (1996).
  • [6] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2001.
  • [7] T. Kaczorek, “Reachability and minimum energy control of positive 2D systems with delays”, Control and Cybernetics 34 (2), 411–423 (2005).
  • [8] M.E. Valcher, “On the internal stability and asymptotic behavior of 2D positive systems”, IEEE Trans. on Circuits and Systems – I 44 (7), 602–613 (1997).
  • [9] N.K. Bose, Applied Multidimensional Systems Theory, Van Nonstrand Reinhold Co., New York, 1982.
  • [10] N.K. Bose, Multidimensional Systems Theory Progress, Directions and Open Problems, D. Reidel Publishing Co., Dordrecht, 1985.
  • [11] K. Galkowski, State Space Realizations of Linear 2D Systems with Extensions to the General nD (n > 2) Case, Springer Verlag, London, 2001.
  • [12] T. Kaczorek, Two-Dimensional Linear Systems, Springer Verlag, London, 1985.
  • [13] E. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, J. Wiley, New York, 2000.
  • [14] T. Kaczorek, “Asymptotic stability of positive 1D and 2D linear systems”, Recent Advances in Control and Automation 1, 41–52 (2008).
  • [15] T. Kaczorek, “Asymptotic stability of positive 2D linear systems”, XIII Sci. Conf. Computer Applications in Electrical Engineering 1, CD-ROM (2008).
  • [16] T. Kaczorek, “LMI approach to stability of 2D positive systems”, Multidimensional Systems and Signal Processing 20 (1), 39–54 (2009).
  • [17] M. Twardy, “An LMI approach to checking stability of 2D positive systems”, Bull. Pol. Ac.: Tech. 55 (4), 385–395 (2007).
  • [18] T. Kaczorek, “Positivity and stabilization of 2D linear systems”, Discuss. Math. Differ. Inclusions. 29, 43–52 (2009).
  • [19] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York, 1993.
  • [20] K. Nashimoto, Fractional Calculus, Descartes Press, Koriyama, 1984.
  • [21] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • [22] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [23] P. Ostalczyk, Epitome of Fractional Calculus, Theory and its Applications in Automatics, Publishing Department of Technical University of Łódź, Łódź, 2008.
  • [24] T. Kaczorek, “Fractional 2D linear systems”, J. Automation, Mobile Robotics & Intelligent Systems 2 (2), 5–9 (2008).
  • [25] T. Kaczorek, “Positive different orders fractional 2D linear systems”, Acta Mechanica et Automatica 2 (2), 51–58 (2008).
  • [26] T. Kaczorek, “Positive 2D fractional linear systems”, COMPEL 28 (2), 341–352 (2009).
  • [27] T. Kaczorek, “Positivity and stabilization of fractional 2D Roesser model by state feedbacks, LMI approach”, Archives of Control Science 19(LV) (2), 165–177 (2009).
  • [28] T. Kaczorek and K. Rogowski, “Positivity and stabilization of fractional 2D linear systems described by the Roesser model”, Int. J. Appl. Math. Comp. Sci. 20 (1), 86–92 (2010).
  • [29] M.S.N. Murty and B.V. Apparao, “Controllability and observability of Lyapunov systems”, Ranchi University Mathematical J. 32, 55–65 (2005).
  • [30] T. Kaczorek, “Positive discrete-time linear Lyapunov systems”, Proc. 15th Mediterranean Conf. Control and Automation, MED 1, CD-ROM (2007).
  • [31] T. Kaczorek and P. Przyborowski, “Continuous-time linear Lyapunov cone-systems”, Proc. 13th IEEE IFAC Int. Conf. Methods and Models in Automation and Robotics 1, 225–229 (2007).
  • [32] T. Kaczorek and P. Przyborowski, “Positive continuous-time linear Lyapunov systems”, Proc. Int. Conf. Computer as a Tool, EUROCON 1, 731–737 (2007).
  • [33] T. Kaczorek and P. Przyborowski, “Positive continuous-time linear time-varying Lyapunov systems”, Proc. 16th Int. Conf. Systems Science 1, 140–149 (2007).
  • [34] T. Kaczorek and P. Przyborowski, “Reachability, controllability to zero and observability of the positive discrete-time Lyapunov systems”, Control and Cybernetics 38 (2), 529–541 (2009).
  • [35] P. Przyborowski and T. Kaczorek, “Positive discrete-time linear Lyapunov systems”, Int. J. Appl. Math. Comp. Sci. 19 (1), 95–105 (2009).
  • [36] P. Przyborowski, “Positive fractional discrete-time Lyapunov systems”, Archives of Control Science 18 (1), 121–134 (2008).
  • [37] P. Przyborowski, “Fractional discrete-time Lyapunov conesystems”, Electrotechnical Review 84 (5), 47–52 (2008).
  • [38] T. Kaczorek, Vectors and Matrices in Automation and Electrotechnics, WNT, Warsaw, 1998, (in Polish).
  • [39] M. Buslowicz, “Simple stability conditions for linear positive discrete-time systems with delays”, Bull. Pol. Ac.: Tech. 56 (4), 325–328 (2008).
  • [40] M. Buslowicz and T. Kaczorek, “Simple conditions for practical stability of positive fractional discrete-time linear systems”, Int. J. Appl. Math. Comp. Sci. 19 (2), 263–269 (2009).
  • [41] T. Kaczorek, “Choice of the forms of Lyapunov functions for positive 2D Roesser model”, Int. J. Appl. Math. Comp. Sci. 17 (4), 471–475 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0048-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.