Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is concerned with the propagation of circular crested Lamb waves in a homogeneous micpropolar porous medium possessing cubic symmetry. The frequency equations, connecting the phase velocity with wave number and other material parameters, for symmetric as well as antisymmetric modes of wave propagation are derived. The amplitudes of displacement components, microrotation and volume fraction field are computed numerically. The numerical results obtained have been illustrated graphically to understand the behavior of phase velocity and attenuation coefficient versus wave number of a wave.
Rocznik
Tom
Strony
103--110
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
autor
- Department of Mathematics, Kurukshetra University, Kurukshetra-136 119, India, rajneesh kuk@rediffmail.com
Bibliografia
- [1] J.W. Nunziato and S.C. Cowin, “A non-linear theory of elastic materials with voids”, Arch. Rat. Mech. Anal. 72, 175–201 (1979).
- [2] S.C. Cowin and J.W. Nunziato, “Linear elastic materials with voids”, J. Elasticity 13, 125–147 (1983).
- [3] E.S. Suhubi and A.C. Eringen, “Non-linear theory of simple microelastic solids II”, Int. J. Engng. Sci. 2, 389–404 (1964).
- [4] A.C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York, 1999.
- [5] R.D. Mindlin, “Microstructure in linear elasticity”, Arch. Rational Mech. Anal. 16, 51–78 (1964).
- [6] A.C. Eringen, “Linear theory of micropolar elasticity”, J. Math. Mech. 16, 909–923 (1966).
- [7] E. Scarpetta, “On the fundamental solutions in micropolar elasticity with voids”, Acta. Mechanica 82, 151–158 (1990).
- [8] M. Marin, “The mixed problem in elastostatic of micropolar materials with voids”, An: Stiinf Uni. Ovidivs Constanta Ser. Mat. 3, 106–117 (1995).
- [9] M. Marin, “Some basic theorems in elastostatics of micropolar materials with voids”, J. Comput. Appl. Math. 70, 115–126 (1996).
- [10] M. Marin, “Generalized solutions in elasticity of micropolar bodies with voids”, Rev. Acad. Canaria. Cienc. 8, 101–106 (1996).
- [11] M. Marin, “A temporally evolutionary equation in elasticity of micropolar bodies with voids”, Bull. Ser. Appl. Math. Phys. 60, 3–12 (1998).
- [12] F. Passarella, “Some results in micropolar thermoelasticity”, Mechanics Research Communications 23, 349–357 (1996).
- [13] R. Kumar and G. Partap, “Rayleigh Lamb waves in a micropolar isotropic elastic plate”, Applied Mathematics and Mechnics 27, 1049–1059 (2006).
- [14] R. Kumar and G. Partap, “Circular crested waves in a microstretch elastic plate”, Science and Engineering of Composite Materials 14, 251–269 (2007).
- [15] T.M. Atanackovic and A. Guran, Theory of Elasticity for Scientists and Engineers, Birkhauser, Klosterberg, 2000.
- [16] A.C. Eringen, “Plane waves in nonlocal micropolar elasticity”, Int. J. Engng. Sci. 22, 1113–1121 (1984).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0048-0044