Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a virtual actuator-based active fault-tolerant control strategy is presented. After a short introduction to Takagi-Sugeno fuzzy systems, it is shown how to design a fault-tolerant control strategy for this particular class of non-linear systems. The key contribution of the proposed approach is an integrated fault-tolerant control design procedure of fault identification and control within an integrated fault-tolerant control scheme. In particular, fault identification is implemented with the suitable state observer. While, the controller is implemented in such a way that the state of the (possibly faulty) system tracks the state of a fault-free reference model. Consequently, the fault-tolerant control stabilizes the possibly faulty system taking into account the input constraints and some control objective function. Finally, the last part of the paper shows a comprehensive case study regarding the application of the proposed strategy to fault-tolerant control of a twin-rotor system.
Słowa kluczowe
Rocznik
Tom
Strony
93--102
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
autor
- Institute of Control and Computation Engineering, University of Zielona Góra, 50 Podgórna St., 65-246 Zielona Góra, Poland, L.Dziekan@issi.uz.zgora.pl
Bibliografia
- [1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, Springer-Verlag, New York, 2003.
- [2] J. Korbicz, J. Kościelny, Z. Kowalczuk, and W. Cholewa, Fault Diagnosis. Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin, 2004.
- [3] M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems, Springer-Verlag, Berlin, 2007.
- [4] F. Delebecque, R. Nikoukah, and H. Rubio Scola, “Test signal design for failure detection: A linear programming approach”, Int. J. Applied Mathematics and Computer Science 13 (4), 515–526 (2003).
- [5] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems”, Proc. IFAC Safeprocess Washington 1, 65–276 (2003).
- [6] J. Chen, R. Patton, and Z. Chen, “An LMI approach to faulttolerant control of uncertain systems”, Proc. IEEE Conf. on Decision and Control 1, 175–180 (1998).
- [7] Y. Liang, D. Liaw, and T. Lee, “Reliable control of nonlinear systems”, IEEE Trans. Automatic Control 45, 706–710 (2000).
- [8] F. Liao, J. Wang, and G. Yang, “Reliable robust flight tracking control: an lmi approach”, IEEE Trans. Control Syst. Techn. 10, 76–89 (2002).
- [9] Z. Qu, C. Ihlefeld, J. Yufang, and A. Saengdeejing, “Robust fault-tolerant self-recovering control of nonlinear uncertain systems”, Automatica 39, 1763–1771 (2003).
- [10] H. Li, Q. Zhao, and Z. Yang, “Reliability modeling of fault tolerant control systems”, Int. J. Applied Mathematics and Computer Science 17 (4), 491–504 (2007).
- [11] M. Witczak, “Advances in model-based fault diagnosis with evolutionary algorithms and neural networks”, Int. J. Applied Mathematics and Computer Science 16 (1), 85–99 (2006).
- [12] S. Kanev and M. Verhaegen, “Reconfigurable robust faulttolerant control and state estimation”, Proc. 15th IFAC World Congress 1, CD-ROM (2002).
- [13] J. Maciejowski, Predictive Control with Constraints, Prentice Hall, New York, 2002.
- [14] J. Lunze and T. Steffen, “Control reconfiguration after actuator failures using disturbance decoupling methods”, IEEE Trans. on Automatic Control 51 (10), 1590–1601 (2006).
- [15] J.H. Richter and J. Lunze, “H-infinity-based virtual actuator synthesis for optimal trajectory recovery”, Proc. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes 1, 1587–1592 (2009).
- [16] J. H. Richter, S. Weiland, W. P. M. H. Heemels, and J. Lunze, “Decoupling-based reconfigurable control of linear systems after actuator faults”, Proc. 10th Eur. Control Conf. 1, 2512–2517 (2009).
- [17] M. Witczak, L. Dziekan, V. Puig, and J. Korbicz, “Design of a fault-tolerant control scheme for takagi-sugeno fuzzy systems”, Control and Automation, 16th Mediterranean Conf. 1, 280–285 (2008).
- [18] Q. Rong and G. Irwin, “LMI-Based controller design for discrete polytopic LPV systems”, Proc. European Control Conf. 1, CD-ROM (2003).
- [19] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control”, IEEE Trans. Systems, Man and Cybernetics 15 (1), 116–132 (1985).
- [20] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley-Interscience, London, 2001.
- [21] S. Hui and S. Zak, “Observer design for systems with unknown input”, Int. J. Applied Mathematics and Computer Science 15 (4), 431–446 (2005).
- [22] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics, vol. 15, SIAM, New York, 1994.
- [23] A. Rahideh and M.H. Shaheed, “Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system”, Proc. Institution of Mechanical Engineers, Part I, J. Systems and Control Engineering 227, 89–101 (2007).
- [24] Feedback Instruments Limited, Crowborough, Twin Rotor Mimo System Advanced Teaching Manual 1, London, 1998.
- [25] S. Montes de Oca, V. Puig, M. Witczak, and J. Quevedo, “Fault-tolerant control of a two-degree of freedom helicopter using LPV techniques”, Proc. 16th Mediterranean Conference on Control and Automation 1, 1204–1209 (2008).
- [26] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, Upper Saddle River, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0048-0043