PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stokes flow of an incompressible micropolar fluid past a porous spheroidal shell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Consider a pair of confocal prolate spheroids S0 and S1 where S0 is within S1. Let the spheroid S0 be a solid and the annular region between S0 and S1 be porous. The present investigation deals with a flow of an incompressible micropolar fluid past S1 with a uniform stream at infinity along the common axis of symmetry of the spheroids. The flow outside the spheroid S1 is assumed to follow the linearized version of Eringen’s micropolar fluid flow equations and the flow within the porous region is assumed to be governed by the classical Darcy’s law. The fluid flow variables within the porous and free regions are determined in terms of Legendre functions, prolate spheroidal radial and angular wave functions and a formula for the drag on the spheroid is obtained. Numerical work is undertaken to study the variation of the drag with respect to the geometric parameter, material parameter and the permeability parameter of the porous region. An interesting feature of the investigation deals with the presentation of the streamline pattern.
Rocznik
Strony
63--74
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] T. Zlatanovski, “Axi symmetric creeping flow past a porous prolate spheroidal particle using Brinkman model”, Quart. J. Mech. Appl. Math. 52, 111–126 (1999).
  • [2] A.I. Leonov, “The slow stationary flow of a viscous fluid about a porous sphere”, J. App. Maths. and Mech. 26, 564–566 (1962).
  • [3] D.D. Joseph and L.N. Tao, “The effect of permeability on the slow motion of a porous sphere in a viscous liquid”, ZAMM 44, 361–364 (1964).
  • [4] M.P. Singh and J.L. Gupta, “The effect of permeability on the drag of a porous sphere in a uniform stream”, ZAMM 51, 27–32 (1970).
  • [5] D.N. Sutherland and Tan, “Sedimentation of a porous sphere”, Chem. Eng. Sci. 25, 1948–1950 (1970).
  • [6] I.P. Jones, “Low Reynolds number flow past a porous spherical shell”, Proc. Cambridge. Phil. Soc. 1, 231–238 (1973).
  • [7] R.K. Gupta, “Slow flow of a viscous fluid past a porous spherical surface in a uniform stream”, ZAMM 54, 815–817 (1974).
  • [8] A. Nir, “Linear Shear flow past a porous particle”, Appl. Sci. Res. 32, 313–325 (1976).
  • [9] J.J.L. Higdon and M. Kojima, “On the calculation of Stokes flow past porous particles”, Int. J. Multi Phase Flow 7, 719–727 (1981).
  • [10] D. Srinivasacharya, “Creeping flow past a porous approximate sphere”, ZAMM 83, 499–504 (2003).
  • [11] D. Srinivasacharya, “Flow past a porous approximate shell”, ZAMP 58, 646–658 (2007).
  • [12] A.C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. 16, 1–18 (1966).
  • [13] G. Lukaszewicz, Micropolar Fluids, Theory and Applications, Birkhauser, Berlin, 1999.
  • [14] A. Kucaba-Pietal, “Microchannels flow modeling with the micropolar fluid theory”, Bull. Pol. Ac.: Tech. 52 (3), 209–214 (2004).
  • [15] S.K. Lakshmana Rao and P. Bhujanga Rao, “Slow stationary micropolar fluid past a sphere”, J. Engg. Math. 4, 209–217 (1971).
  • [16] S.K. Lakshmana Rao and T.K.V. Iyengar, “The slow stationary flow of incompressible micropolar fluid past a spheroid”, Int. J. Engg. Sci. 19, 189–220 (1981).
  • [17] T.K.V. Iyengar and D. Srinivasacharya, “Stokes flow of an incompressible micropolar fluid past an approximate sphere”, Int. J. Engng. Sci. 31, 153 (1993).
  • [18] H. Ramkisson and R. Majumdar, “Drag on an axially symmetric body in the Stokes flow of micropolar fluid”, Physics of Fluids 19, 16–21 (1976).
  • [19] H. Ramkisson, “Slow steady rotation of axially symmetric body in a micropolar fluid”, Applied Sci. 33, 243–257 (1977).
  • [20] D. Srinivasacharya and I. RajyaLakshmi, “Creeping flow of micropolar fluid past a porous sphere”, Applied Mathematics & Computation 153 (3), 843–854 (2004).
  • [21] T.K.V. Iyengar and T.S.L. Radhika, “Stokes flow of an incompressible micropolar fluid past a porous spheroid”, Applied Mathematics & Computation 160 (2011), (to be published).
  • [22] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1965.
  • [23] L.E. Payne and W.H. Pell, “The Stokes flow problems for a class of axially symmetric bodies”, J. Fluid Mech. 7, 529–549 (1960).
  • [24] B.S. Bhatt and N.C. Sacheti, “Flow past a porous spherical shell using Brinkman model”, J. Phy. D: Appl. Phys. 27, 37–41 (1994).
  • [25] E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1955.
  • [26] G.P. Raja Sekhar and Osamu Sano, “Viscous flow past a circular/spherical void in porous media – an application to measurement of the velocity of ground water by the single Boring Method”, J. Physical Society of Japan 69 (8), 2479–2484 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0048-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.