PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ niestabilności hydrodynamicznych na efektywność wymiany ciepła podczas skraplania czynnika chłodniczego R404A w minikanałach rurowych

Identyfikatory
Warianty tytułu
EN
Influence of hydrodynamic instability on the efficiency of heat transfer during the condensation of R404A refrigerant in pipe mini-channels
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wyniki badań eksperymentalnych dotyczących określenia wpływu niestabilności hydrodynamicznych na intensywność wymiany ciepła podczas skraplania czynnika chłodniczego R404A w minikanałach rurowych. Miara efektywności procesu skraplania jest wartość współczynnika przejmowania ciepła alfa. Szczególnie ważne jest określenie wartości tego współczynnika w dwufazowej strefie skraplania w skraplaczu kompaktowym. W pozostałych strefach, tzn.: schłodzenia pary przegrzanej i dochłodzenia skroplin efektywność cieplna jest znacznie mniejsza. Niestabilności hydrodynamiczne o charakterze periodycznym wpływają na zmiany wielkości tych stref. Zmniejszenie wartości współczynnika przejmowania ciepła a w strefie dwufazowej prowadzi do obniżenia intensywności procesu odbioru ciepła w całym skraplaczu. Badania eksperymentalne wykonano w warunkach skraplania czynnika chłodniczego R404A w poziomych minikanałach rurowych o średnicy wewnętrznej d = 0,64; 0,90; 1,40; 1,44; 1,92; 2,30 i 3,30 mm. Zakłócenia procesu skraplania wywoływano okresowym (periodycznym) zatrzymaniem i ponownym włączeniem przepływu czynnika. W zakresie częstotliwości / = 0,2+5 Hz generowanych periodycznie zakłóceń stwierdzono wyraźny, niekorzystny ich wpływ na intensywność wymiany ciepła podczas procesu skraplania w minikanałach rurowych. Zmniejszenie intensywności wymiany ciepła podczas procesu skraplania wywołane niestabilnościami hydrodynamicznymi zostało przedstawione w postaci zależności współczynnika przejmowania ciepła a od stopnia suchości x oraz częstotliwości/występujących zakłóceń. Określono wpływ właściwości czynnika chłodniczego, średnicy minikanałów i częstotliwości/na zjawisko "tłumienia" zakłóceń periodycznych w minikanale rurowym.
EN
The paper present the results of experimental investigations concerning the determination of the influence of hydrodynamic instabilities on the heat transfer intensity during the condensation of R404A refrigerant in pipe minichannels. The value of the heat transfer coefficient alfa constitutes the measure of the effectiveness of the condensation process. It is particularly important to determine the value of the coefficient in the two-phase condensation area in a compact con-denser. In the remaining areas, i.e. precooling of superheated vapor and subcooling of the condensate, the heat efficiency is substantially smaller. Hydrodynamic instabilities of a periodic nature have an influence on the changes of the sizes of these areas. A decrease of the heat transfer coefficient " in the two-phase area results in a decrease of the intensity of the heat removal process in the whole condenser. The experimental investigations were conducted in the conditions of the condensation of R404A refrigerant in horizontal pipe minichannels with internal diameters d = 0.64; 0.90; 1.40; 1.44; 1.92; 2.30 and 3.30 mm. Disturbances of the condensation process were induced with a periodical stop and a repetition of the flow of the refrigerant. In the range of frequencies f= 0.2*5 Hz of periodically generated disturbances, their evident and unfavorable influence was established on the intensity of the heat transfer during the condensation process in pipe minichannels. The reduction of the intensity of the heat transfer during the condensation process which was induced with hydrodynamic instabilities was presented in the form of the dependence of heat transfer coefficient a from the vapor quality x and the freąuencies of the disturbances occurring. The influence was determined of the refrigerant, the diameter of the minichannels and frequencies on the "damping" phenomenon of periodical disturbances in a pipe minichannel.
Rocznik
Strony
4--10
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Katedra Techniki Cieplnej i Chłodnictwa Politechnika Koszalińska
Bibliografia
  • [1] KANDLIKAR S.G.: Fundamental issue related to flow boiling in minichannels and micro-channels, Experimental Thermal and Fluid Mechanics and Thermodynamics 26, (2002), 129-146.
  • [2] BOHDAL T., CHARUN H., CZAPP M.: Heat removal du-ring condensation of refrigerants in air chilled condensers, Fart 1. Refrigerating and Air Conditioning Technology 9 (1999) 353, (in Polish).
  • [3] KAKAĆ S., BON B.:A review of two-phase flow dynamic instabilities in tubę bofling systems. International Journal of Heat and Mass Transfer 51 (3-4) (2008), 399-433.
  • [4] ZHANG T., TONG T., CHANG I-Y., PELES Y., PRASHER R., IENSEN M.K., WF.NF J.T., P. PHELAN I.: Ledinegg instability in microchannels. International Journal of Heat and Mass Transfer 52 (2009), 5661-5674.
  • [5] KENNEUY J.E., ROACH G.M., DOWLING M.F. jr,. AB-DEL-KHALIK S.I., GHIAASIANN S.M., JETER S.M., and OUERSHI Z.H., Ihe Onset of Flow Instability in Uniformly Heated Horizontal Microchannels. ASME J. of Heat Transfer 122 (2000), 118-125.
  • [6] ARDRON K.H. and DUFFEY R.B.: Acoustic wave propagation in a flowing liquid-vapor mixture, Inlernational Journal Multiphase Flow 4 (1977), 303-322.
  • [7] CAO L, KAKAĆ S., LIU H.T., SARMA P.K.: The effects of thermal non-equilibrium and inlet temperature on two-phase flow pressure drop type instabilities in an up flow boiling system. Int. J. Therm. Sci. 39 (2000), 886-895.
  • [8] COMAKLI O„ KARSI.I S., YILMAZ M., 2002: Experimental investigation of two phase flow instabilities in a horizontal in-tube boiling system. Energy Conversion and Management 43 (2002), 249-268.
  • [9] NAKORYAKOY V.E., KUZNETSOY V.V., DONTSOY V.E., 1989: Pressure waves in saturated porons medium. Int. J. of Multiphase Flow 15 (1989), 857-875.
  • [10] NAKORYAKOY V.E., POKUSAEY B.G., PRIBATURIN N.A., SHREIBER I.R., 1988: The wave dynamics in vapor liquid medium, Int. J. of Multiphase Flow 14 (1988) no 6; 655-671.
  • [11] XU J. and CHEN T: Acoustic wave prediction in flowing steam-water two-phase mixture. International Journal of Heat and Mass Transfer 43 (2000), 1079-1088.
  • [12] HE1NZEL V., HOLZINGER J., SIMON M.: Fluid oscillation in flat plat boiling water collectors. Solar Energy 59 (l997), 43-48.
  • [13] WU H.Y. and CHENG R: Boiling instability in parallel silicon microchannels at different heat flux. International Journal of Heat and Mass Transfer 47 (2004), 3631-3641.
  • [14] YUNCU H., YILDIRIM O.T., KAKAĆ S., 1991: Two-phase flow instabilities in a horizontal single boiling channel. Appl. Sci. Res. 48 (1991), 83-104.
  • [15] XU J.L., ZHOU J., GAN Y.H., CHEN Y.: Unsteady flow phenomenon in a heated microchannel at high heat flutes. Experimental Heat Transfer. 17 (2004), 299-319.
  • [16] ABDEI.GHANI-IDRISSI M.A., ESTEL L., BAGUI E: Experimental study of convective heat transfer instabilities in transient response along a countercurrent heat exchanger. Experimental Heat Transfer, 13 (2000), 197-209.
  • [17] PERRY L, JANNOTA Y., MAI1.I.ETA D., FIERSAB B.: Effect of velocity distribution on external wall temperature field for a flat microchannel. Experimental Heat Transfer 23(2010), 27-43.
  • [18] DING Y. and KAKAĆ S.: Dynamic instabilities of boiling two-phase flow in a single horizontal channel. Experimental Thermal and Fluid Science (1995), 327-342.
  • [19] BOGOJEYIĆ D., SEFIANF. K., WALTON A.)., LIN H., CUMMINS G., 2009: Two-phase tlow instabilities in a silicon microchannels heat sink. International Journal of Heat and Fluid Flow 30 (2009), 854-867.
  • [20] HUH Ch., KIM J., KIM M.H.: Flow pattern transition instability during flow boiling in a single microchannel. International Journal of Heat and Mass Transfer 50 (2007), 1049-1060.
  • [21] WANG G., CHENG P., BERGLES A.E.: Effects of inlet outlet configurations on flow boiling instability in parallel microchannels. International Journal of Heat and Mass Transfer 51 (2008), 2267-2281.
  • [22] WU H.Y. and CHENG R: Boiling instability in parallel silicon microchannels at different heat flux. International Journal of Heat and Mass Transfer 47 (2004), 3631-3641.
  • [23] ZHANG T, WEN J., PELES Y., CATANO J., ZHOU R., JENSF.N M.K.: Two-phase refrigeration flow instability analysis and active control in transient electronics coo-ling systems. International Journal of Multiphase Flow 37 (2011), 84-97.
  • [24] QUAN X., CIIENG R, WU H.: Transition from annular flow to plug/slug flow in condensation of steam in micro channels. International Journal of Heat and Mass Transfer, 51(2008),707-716.
  • [25] TENG R., CHENG R, 7,1 IAO T.S.: Instability of condensate film and capillary blocking in small-diameter-termosyphon condensers. International Journal of Heat and Mass Trans¬fer 42 (1999), 3071-3083.
  • [26] PELES Y.P., YARIN L.P. and HETSRONI G.: Steady and Unsteady Flow in a Heated Capillary. Int.J. Multiphase Flow, 27 (2001), 577-598.
  • [27] YAN Y.Y., LIN T.F., 1999: Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int. J. of Heat and Mass Transfer (1999), 697-708.
  • [28] NULBOONRUENG T, KAEWON J. and WONGWISES S., 2003: Two-phase condensation heat transfer coefficients of HFC-134a at high mass flux in smooth and micro-fin tubes. Int. Comm. Heat Mass Transfer 30 no. 4 (2003), 577-590.
  • [29] SHIN J.S., KIM M.H.: An experimental study of condensation heal transfer inside a mini-channel with a new measurement technique. International Journal of Multiphase Flow 30 (2004), 311-325.
  • [30] CHOI K-IL, PAMITRAN A.S., OH J-T, SAITO K.: Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels. International Journal of Refrigeration, 32 (2009), 837-834.
  • [31] KANG Y.T., HONG H., LEE Y'.S.: Experimental correlation of falling film condensation on enhanced tubes with HFC134a; low-fin and Turbo-C tubes. International Journal of Refrigeration 30 (2007), 805-811.
  • [32] XU J.L., ZHOU J., GAN Y.H., CHEN Y., 2004: Unsteady flow phenomenon in a heated microchannel at high heat fluxes. Experimental Heat Transfer 17 (2004), 299-319.
  • [33] ROACHE P. J.: Wiczisitielnaja Gidrodinamika.„MlR" Mo-scow 1980,58-62.
  • [34] BERGLES A.F., COLLIER J.G., DELHAYE J.M., HEWITT G.F., MAYINGER F., 1981: Two-phase flow and heat transfer in the power and process Industries. Hemisphere Publishing Corporation Washington.
  • [35] GH1AASIAAN S.M.: Two-phase flow, boiling, and condensation in conventional and miniature systems. Cambridge University Press 2008, 68-76.
  • [36] KACPROWSK1 J.: Outline of Electroacoustics. Communications Publishing Houses. Issue II, Warsaw 1960. (in Polish).
  • [37] KARTASCHOFF P: Erequcncy and Time. Publishing Houses of Communications Warsaw 1985. (in Polish).
  • [38] B1LLY S. Ch. R: Condensation Heat Transfer in Microchannel, application for the Degree of Master of Philosophy in Mechanical Engineering. Department of Mechanical Engineering The Hong Kong University of Science and Technology (2004).
  • [39] KANDLIKAR S.G.: Microchannels and minichannels- history, terminology, classification and current research needs. First International Conference on Microchannels and Minichannels, New York, (2003).
  • [40] CHARUN H.: Thermal and flow characteristics of the condensation of R404A refrigerant in pipe minichannels. Applied Thermal Engineering (2011) proceedings.
  • [41] PAYLENKO A.N. and LEL Y.Y.: Model of self-maintaining evaporation front for superheated liquids. Proc. 3th Int. Confcrence on Multiphase Flow, ICMF'98, Lyon (1998) France, 4.3-5 (1998).
  • [42] YEZIROGLU T.N.: Two-phase flow instabilities, final report. NSF Project CME 79-20018, Clean Energy Research Inst. Coral Gables, FI. (1983).
  • [43] BILICKI Z.: The relation between the experiment an theory for nucleate forced boiling. Proc. 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and 'Ihermodynamics. Brussels, Edizioni ETS Pisa 2, 571-578 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0048-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.