PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immobilizowane enzymy w bioremediacji środowisk zanieczyszczonych arenami

Identyfikatory
Warianty tytułu
EN
Immobilized enzymes in bioremediation of arene polluted environments
Języki publikacji
PL
Abstrakty
PL
Związki aromatyczne, stanowiące duże zagrożenie dla organizmów żywych, rozkładane są przez mikroorganizmy do czterech głównych intermediatów: katecholu, kwasu protokatechowego, hydroksychinolu i kwasu gentyzynowego. Ze względu na dużą wrażliwość wolnych enzymów na zmienne warunki środowiska coraz częściej w technologiach oczyszczania ścieków stosuje się immobilizowane enzymy. Obecnie najpowszechniej stosowanym związkiem sieciującym jest glutaraldehyd, a nośnikami - membrany w układach przepływowych. Spośród enzymów stosowanych w technologiach oczyszczania terenów zdegradowanych, miedzy innymi zastosowanie znalazły immobilizowane: peroksydaza, lakaza oraz dioksygenazy katecholowe. Zaimmobilizowane enzymy odznaczają się większą stabilnością w czasie oraz odpornością na zmienne warunki środowiska. Ponadto stosowanie immobilizowanych enzymów pozwala na ich odzyskiwanie po zakończonym procesie, co obniża koszty bioprocesów.
EN
Aromatic compounds are considered as one of the most toxic and weakly degraded xenobiotics. They are degradated to four key intermediates such as catechol, protocatechuate, hydroxyquinol and gallic acid. Free enzymes are very sensitive to changing conditions of environment. That is a reason of immobilized enzymes very often use in technologies of sewage treatment. Glutaraldehyde is the most popular cross-linking agent and membranes in flow systems are the most often applied carrier in immobilization at present. The most often using enzymes in environmental treatment are immobilized peroxidise, laccase and catechol dioxygenases. Immobilized enzymes are more stable in time and resistant to environmental conditions changes. Immobilized enzymes use allow to recover them after finished process and, in the result, bioprocess cost reduction.
Czasopismo
Rocznik
Strony
53--61
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
autor
  • Uniwersytet Śląski, Wydział Biologii i Ochrony Środowiska, Katedra Biochemii, 40-032 Katowice, ul. Jagiellońska 28
Bibliografia
  • 1. Drobnik J., 1999, Genetically modified organisms (GMO) in bioremediation and legislation, International Błodeterioation and Biodegradation, 44, 3-6.
  • 2. Fermandez-Lafuente R., Guisan J.M., Ali S., Cowan D., 2000, Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability, Enzyme and Microbial Technology, 26, 568-573.
  • 3. Kalogeris E., Sanakis Y., Mamma D., Christakopoulos P., Kekos D., Stamatis H., 2006, Properties of catechol l,2-dioxygenase from Pseudomonos putida immobilized in calcium alginate hydrogels, Enzyme and Microbial Technology, 39, 1113-1121.
  • 4. Biłyk A., Kabsch-Korbutowicz M., 1994, Przemiany naftalenu, acenaftalenu i antracenu w procesie utleniania chlorem, Ochrona Środowiska, 53, 2, 3-5.
  • 5. IwasakiT., Miyauchi K., Masai E., Fukuda M., 2006, Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated bi-phenyl degradation in Rhodococcus sp. strain RHA1, Applied Microbiology and Biotechnology, 71, 6396-5402.
  • 6. Liang Y., Gardner D.R., Miller Ch. D., Chen D., Andersen A.J., Weimer B.C., Sims R.C., 2006, Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterin sp. strain KMS, Applied Microbiology and Biotechnology, 72, 7821-7828.
  • 7. Takeo M., Murakami M., Niłhara S., Yamamoto K., Nishimura M., Kato D., Negoro S., 2008, Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PNI: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression, Journal of Bacteriology, 190, 7367-7374.
  • 8. Wojcieszyńska D., Greń I., Guzik U., 2008, New pathway of dichlorophenols degradation by Pseudomonas sp strain US l in aerobic conditions, Ecological Chemistry and Engineer-ingA, 15, 703-710.
  • 9. Oie C.S.I., Albaugh C.E., Peyton B.M., 2007, Benzoate and salicylate degradation by Halomonas campiscdis, an alkaliphilic and moderately halophilic microorganism, Water Research, 41, 1235-1242.
  • 10. Pathak H., Kanthasaa D., Malpani A., Madarnwar D., 2009, Naphthalene degradation by Pseudomonas sp. HOB1: In vitro studies and assessment of naphthalene degradation efficiency on simulated microcosms, Journal of Hazardous Materials, 166, 1466-1473.
  • 11. Mielgo L, Palma C., Guisan J.M., Fernandez-Lafuente R., Moreira M .T., Feijoo G., Lema J.M., 2003, Covalent immobilization of man-ganese peroxidase (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55, Enzyme and Microbial Technology, 32, 769-775.
  • 12. Peralta-Zamora P., Pereira C.M., Tiburtius E.R.L., Moraes S.G., Rosa M.A., Minussi R.C., Duran N., 2003, Decolorization of reactive dyes by immobilized laccase, Applied Cataly-sis B: Environmental, 42, 131-144.
  • 13. Greń L, Guzik U., Wojcieszyńska D., Łabużek S., 2008, Molekularne podstawy rozkładu kse-nobiotycznych związków aromatycznych, Biotechnologia, 81, 58-67.
  • 14. Moody J.D., Freeman J.P., Doerge D.R., Cerniglia C.E., 2001, Degradation of phenanthrene and anthracene by celi suspension of Myco-bacterium sp. strain PYR-1, Applied and Envi-ronmental Microbiology, 67, 1476-1483.
  • 15. Denef V.J., Patrauchan M.A., Florizone C., Park J., Tsoi T.V., Verstraete W., Tiedje J.M., Eltis L.D., 2005, Growth substrate- and phase-specific expression of biphenyl, benzoate, and Cl metabolic pathways in Burkhotderia xenovorans LB400, Journal of Bacteriology, 187, 7996-8005.
  • 16. Łabużek S., Mańka D., 2000, Mikrobiologiczna degradacja chlorofenoli, Postępy Mikrobiologii, 39, 239-251.
  • 17. Vila J., Lopez Z., Sabate J., Minguillon C., SolanasA.M., Grifoll M., 2001, Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons, Applied and Environmental Microbiology, 67, 5497-5505.
  • 18. Stingley R.L., Brezna B., Khan A.A., Cerniglia C.E., 2004, Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1, Microbiology, 150, 3749-3761.
  • 19. Bubinas A., Giedraityte G., Kalediene L., Nivinskiene O., Butkiene R., 2008, Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid, Central European Journal of Biology, 3, 61-68.
  • 20. Ishiyama D., Yujaklia D., Davies J., 2004, Novel pathway of salicylate degradation by Streptomyces sp. strain WA46, Applied Microbiology and Biotechnology, 70, 1297-1306.
  • 21.Sazonova O.L, Izmalkova T.Yu., Kosheleva I.A., Boronin A.M., 2008, Salicylate degradation by Pseudomonas putida strains not involving the "classical" nah2 operon, Microbiology, 77, 710-716.
  • 22. Deveryshetty J., Suvekbala V., Yaradamshetty G., Phale P.S., 2007, Metabolism of 2-, 3-and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD, FEMS Microbiology Letters, 268, 59-66.
  • 23. Zhou N.Y., Fuenmayor S.L., Williams P.A., 2001, nag Genes of Raistonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism, Journal of Bacteriology, 183, 700-708.
  • 24. Greń L, Wojcieszyńska D., Guzik U., Perkosz M., Hupert-Kocurek K., 2010, Enhanced bio-transformation of mononitrophenols by Ste-notrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin, World Journal of Microbiology and Biotechnology, 26, 289-295.
  • 25. Nishino S.F., Spain J.C., 1993, Degrdation of nitrobenzene by a Pseudomonas pseudoalca-ligenes, Applied and Environmental Microbiology, 59, 2520-2525.
  • 26. Behrend Ch., Heesche-Wagner K., 1999, For-mation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Noca.ridioid.es sp. strain CB 22-2, Applied and Environmental Microbiology, 65, 1372-1377.
  • 27. Heiss G., Hofmann K.W., Trachtmann N., Wal-ters D.M., Rouviere R, Knackmuss H.J., 2002, npd gene functions of Rhadococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation, Microbiology, 148, 799-806.
  • 28. Haggblom M.M., 1992, Microbial breakdown of halogenated aromatic pesticides and relat-ed compounds, FEMS Microbiology Reviews, 103, 29-72.
  • 29. Ferreira M.I.M., Marchesi J.R., Janssen D.B., 2008, Degradation of 4-fluorophenol by Arthrobacter sp.strain IF1, Applied Microbiology and Biotechnology, 78, 709-717.
  • 30. Lante A., Crapisi A., Krastanov A., Spettoli P., 2000, Biodegradation of phenols by laccase immobiliser in a membranę reactor, Process of Biochemistry, 36, 51-58.
  • 31. Liang Z.P., Feng Y.Q., Meng S.X., Liang Z.Y., 2005, Preparation and properties of urease im-mobilized onto glutaraldehyde cross-linked chitosan beads, Chinese Chemical Letters, 16, 135-138.
  • 32. de Araiijo J.H.B., Uemura V.O., de Moraes F.F., de Melo Barbosa A., Zanin G.M., 2005, A comparative study on fungal laccases immobilized on chitosan, Brazilian Archives of Biology and Technology, 48, 1-6.
  • 33. López -Gallego F., Betancor L., Mateo C., Hi-dalgo A., Alonso-Morales N., Dellamora Ortiz G.,. Guisan J.M, Fernandez-Lafuente R., 2005, Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports, Journal of Biotechnology, 119, 70-75.
  • 34. Mateo C., Palomo J.M., Fuentes M., Betancor L., Grazu V., López-Gallego F., Pessela B.C.C., Hidalgo A., Fernandez-Lorente G., Fernandez-Lafuente R., Guisan J.M., 2006, Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins, Enzyme and Microbial Technology, 39, 274-280.
  • 35. Zubriene A., Budriene S., Gorochovceva N., Romaśkević T., Matulionis E., Dienys G., 2003, Immobilization of hydrolases onto chitosan microparticles, Chemija, 4, 226-230.
  • 36. Subramanian A., Kennel S.J., Odeń P.I., Jacobson K.B., Woodward J., Dokrycz M.J., 1999, Comparison of techniques for enzyme immobilization on silicon supports, Enzyme and Microbial Technology, 24, 26-34.
  • 37. Migneault L, Dartiguenave C., Bertrand M.J., Waldron K.C, 2004, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crossinking, Bio-techniąues, 37, 790-802.
  • 38. Cao L., van Langen L., Sheldon R.A., 2003, Immobilised enzymes: carrier-bound or carrier-free?, Current Opinion in Biotechnology, 14, 387-394.
  • 39. Tischer W., Kasche V., 1999, Immobilized enzymes: crystals or carriers?, Trends in Biotechnology, 17, 326-335.
  • 40. Giorno L., Molinari R., Natoli M., Drioli E., 1997, Hydrolysis and regioselective transestri-fication catalyzed by immobilized lipases in membrane bioreactors, Journal of Membranę Science, 125, 177-187.
  • 41. Rios G.M., Belleville M.P., Paolucci D., Sanchez J., 2004, Progress in enzymatic membrane reactors - a review, Journal of Membrane Science, 242, 189-196.
  • 42. Cii M., Boyukbayram A.E., Kiralp S., Toppare L., Vagci Y., 2007, Various applications of immobilized glucose oxidase and polyphenol oxidase in a conducting polymer matrix, International Journal of Biplogical Macromolecules, 41, 49-55.
  • 43. Arica M.Y., Bayramoglu G., Bicak N., 2004, Characterization of tyrosinase immobiliser onto spacerarm attache glycidyl methacrylate reactive microbeads, Process Biochemistry, 39, 2007-2017.
  • 44. Berrio J., Plou F.J., Ballesteros A., Martinez A.T., Martinez M.J., 2007, Immobilization of Pycnoporus coccineus laccase on Eupergit C: stabilization and treatment of olive oil mili wastewaters, Biocatalysis and Biotransformation, 25, 130-134.
  • 45. Ensuncho L., Alvarez-Cuenca M., Legge R.L., 2005, Removal of aqueous phenol using immobilized enzymes in a bench scalę and pilot scale three-phase fluidized bed reactor, Bioprocess and Biosystems Engineering, 27, 185-191.
  • 46. Gomez J.L., Bodalo A., Gomez E., Bastida J., Hidalgo A.M., Gomez M., 2006, Immobilization of peroxidase on glass beads: An improved alternative for phenol removal, Enzyme and Microbial Technology, 39, 1016-1022.
  • 47. Kadima T.A., Pickard M.A., 1990, Immobilization of chloroperoxidase on aminopropyl-Glass, Applied Microbiology And Biotechnology, 56, 3473-3477.
  • 48. Magri M.L., de Las Nieves Loustau M., Miranda M.V., Cascone O., 2007, Immobilisation of soybean seed coat peroxidase on its natural sup-port for phenol removal from wastewater, Biocatalysis and Biotransformation, 25, 98-102.
  • 49. Lopez-Serrano P., Cao L., van Rantwijk R, Sheldon R.A., 2002, Cross-linked enzyme aggregates with enhanced activity: application to lipases, Biotechnology Letters, 24, 1379-1383.
  • 50. Sheldon R.A., Schoevaart R., van Langen L.M., 2005, Cross-linked enzyme aggregates (CLEAs): A novel aiad versatile method for enzyme immobilization (a review), Biocatalysis and Biotransformation, 23, 141-147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0047-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.