PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of glycerol, a by-product of the transestrification process of vegetable oils: a review

Identyfikatory
Warianty tytułu
PL
Metody zagospodarowania gliceryny, produktu ubocznego z procesu transestryfikacji olejów roślinnych: przegląd literaturowy
Języki publikacji
EN
Abstrakty
EN
The use of biodiesel is expected to grow in the future due to the environmental policy of the EU. The increase in the production of biodiesel has resulted in a glut of glycerin that has led to a precipitous market price drop. At present glycerol is in surplus but in the near future could become a waste problem. It may create a barrier for the development of this industry branch and reduce biodiesel applications as well. This glut also indicates that known technologies for the utilization of glycerol have many disadvantages and that their efficiency and profitability are too low. The utilization of waste glycerol may be carried out by feedstock recycling into energy carriers (hydrogen, syngas and methane), or it may be converted into other chemicals (eg, acrolein, epichlorohydrin, ethers, esters and alcohols). As hydrogen is a clean energy carrier, the conversion of glycerol into hydrogen is the best glycerol use. Catalytic steam reforming, aqueous reforming, autothermal reforming, pyrolysis, gasification, photo-conversion and bioconversion of glycerol may be considered to solve the glycerol surplus problem. This analysis indicates that the (aqueous/steam) reforming and/or photocatalytic conversion of glycerol have become the best processes for the utilization of glycerol from an economic and environmental point of view.
PL
Biodiesel (mieszanina estrów metylowych lub etylowych wyższych kwasów tłuszczowych), produkowany w procesie transestryfikacji olejów roślinnych, jest najpopularniejszym produktem, pochodzącym z biomasy, dodawanym do tradycyjnych paliw płynnych wytwarzanych z ropy. Jego produkcja w ostatnich latach szybko rośnie, co wynika z aktualnej polityki ochrony środowiska dążącej do ograniczenie emisji ditlenku węgla pochodzącego ze spalania paliw kopalnych. W procesie transestryfikacji powstaje szereg ubocznych produktów. Najważniejszym i powstającym w największej ilości produktem ubocznym (w samym procesie transestryfikacji) jest gliceryna. Duży wzrost ilości produkowanego biodiesla w ostatnich latach spowodował wytworzenie odpowiednio dużej ilości gliceryny, co bardzo zachwiało rynkiem gliceryny, wywołując duży spadek jej ceny. Fakt ten może stanowić pewną barierę rozwoju tej gałęzi przemysłu i ograniczyć dalszy wzrost udziału biodiesla w bilansie paliw silnikowych. Wskazuje to także, że dotychczas proponowane metody nie są wystarczająco efektywne technologicznie i ekonomicznie. Istnieją dwie podstawowe możliwości działania: (1) wykorzystanie gliceryny jako surowca do produkcji innych substancji chemicznych i (2) wykorzystanie jej energetyczne, w tym szczególnie do wytwarzania wodoru. Recykling produktowy jest najkorzystniejszą metodą zagospodarowania produktów ubocznych i odpadów. Jednakże, wykorzystanie gliceryny do wytwarzania innych produktów i półproduktów chemicznych może mieć ograniczone zastosowanie ze względu na to, że rynek tych produktów może się spotkać również z barierą popytu oraz ze względu na uzyskiwane niskie selektywności dla tych produktów. Analiza literatury wskazuje, że recykling surowcowy, w tym szczególnie proces konwersji gliceryny do wodoru, jest dobrą alternatywą, ponieważ rynek na wodór będzie w przyszłości praktycznie nieograniczony. Jeżeli instalacje przemysłowe będą ekonomiczne i proste w eksploatacji, ten sposób będzie prawdopodobnie rozwiązaniem optymalnym.
Rocznik
Strony
9--30
Opis fizyczny
Bibliogr. 97 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Technical University of Lodz, ul. Wólczańska 213, 90-924 Łódź, marek.stelmachowski@p.lodz.pl
Bibliografia
  • [1] Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European, Union.
  • [2] De Guzman D.: European Union promotes increased biodiesel. Chemical Market Reporter, 267(6)19/2005.
  • [3] Schopf N., Schmidt T. and Sobolski D.: Utylizacja termiczna ciekłych paliw biogenicznych - wykorzystanie gliceryny jako taniego paliwa alternatywnego (Utilization of liquid biofuels - glycerol as cheap alternative fuel). SAACKE, XIII Sympozjum Naukowo-Techniczne „Chemia 2007”, 24-26 styczenia 2007, Płock.
  • [4] Statistical Data from European Biodiesel Board website; http://www.ebb-eu.org/stats.php#
  • [5] Adhikari S., Fernando S. and Haryanto A.: A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin. Energy & Fuels, 2007, 21, 2306-2310.
  • [6] Wieloletni Program Promocji Biopaliw lub innych paliw odnawialnych na lata 2008-2014, Dokument przyjęty przez Radę Ministrów w dniu 24 lipca 2007 r. Multi-annual Programme for the Promotion of Biofuels or other renewable fuels, approved by Polish Goverment on 2007-07-24.
  • [7] Rocznik Statystyczny Rzeczpospolitej Polskiej. GUS, Warszawa 2009.
  • [8] Gabryszewska M. and Owczuk M.: Synteza kwasu akrylowego a dostępność surowców odnawialnych do jego produkcji, strona internetowa IChP Warszawa; http://www.ichp.pl/pl/innowacyjna.htm
  • [9] Bocheński C.I., Powałka M. and Bocheńska A.: Możliwości biodiesla w Polsce (Biodiesel in Poland). MOTROL, 2006, 8A, 42-48.
  • [10] Grzybek A.: Uwarunkowania surowcowe produkcji biopaliw, 2008, http://www.oze. szczecin.pl/files/download/58_Uwarunkowania%20surowcowe%20produkcji%20biopaliw.pdf
  • [11] Jerzykiewicz, W., Naraniecki B., Terelak K., Trybuła S., Kosno J. and Lukoszek M.: Zagospodarowanie frakcji glicerynowych z instalacji biodiesla (Utilization of glycerol fractions from biodiesel plant). Przemysł Chem., 2007, 86(5), 397-402.
  • [12] Kopytowski, J.A. and Inwolski A.: Kompleksowy system wytwarzania ciekłych biopaliw z rzepaku jako odnawialnego źródła energii, (A complex system for producing biofuels from rapeseed oil as a renewable energy source). Przemysł Chem., 2007, 86(3), 195-199.
  • [13] Chaudhari S.T. and Bhakshi N.N.: Steam gasification of chars and bio-oil. Report to Bioenergy Development Program Renewable Energy Branch. Energy, Mines and Resources, Canada, Ottawa, Canada, February 2002, 396-436.
  • [14] Valliyappan T., Bakhshi N.N. and Dalai A.K.: Pyrolysis of glycerol for the production of hydrogen or syn-gas. Bioresour. Technol., 2008, 99, 4476-4483.
  • [15] Fernandez Y., Arenillas A., Dıez M.A., Pis J.J. and Menendez J.A.: Pyrolysis of glycerol over activated carbons for syngas production. J. Anal. Appl. Pyrolysis, 2009, 84, 145-150.
  • [16] Stein Y.S., Antal Jr. M.J. and Jones Jr. M.: A study of the gas-phase pyrolysis of glycerol. J. Anal. Appl. Pyrolysis, 1983, 4, 283-296.
  • [17] Dou B., Dupont V., Williams P.T., Chen H. and Ding Y.: Thermogravimetric kinetics of crude glycerol. Bioresour. Technol., 2009, 100, 2613-2620.
  • [18] Douette A.M.D., Turn S.Q., Wang W. and Keffer V.I.: Experimental investigation of hydrogen production from glycerin reforming. Energy & Fuels, 2007, 21, 3499-3504.
  • [19] Adhikari S., Fernando S.D., To F.S.D., Brick M.R., Steel P.H. and Haryanto A.: Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy & Fuels, 2008, 22, 1220-1226.
  • [20] Adhikari S., Fernando S. and Haryanto A.: Hydrogen production from glycerol: An update. Energy Convers. Manage., 2009, 50, 2600-2604.
  • [21] Adhikari S., Fernando S., Gwaltney S.R., To F.S.D., Brick M.R., Steele P.H. and Haryanto A.: A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int. J. Hydrogen Energy, 2007, 32, 2875-2880.
  • [22] Iriondo A., Barrio V.L., Cambra J.F., Arias P. L., Guemez M.B. and Sanchez-Sanchez M.C.: Hydrogen production from glycerol over nickel catalysts modified with Ce, Mg, Zr and La. Top. Catal., 2008, 49, 46-58.
  • [23] Kunkes E.L., Soares R.R., Simonetti D.A. and Dumesic J.A.: An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl. Catal. B: Environmental, 2009, 90, 693-698.
  • [24] Wang X., Li M., Wang H., Liu B. and Ma X.: Thermodynamic analysis of glycerin steam reforming. Energy & Fuels, 2008, 22, 4285-4291.
  • [25] Davda R.R., Shabaker J.W., Huber G.W., Cortright R.D. and Dumesic J.A.: A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catalysis B, Environmental 2005, 56, 171-186.
  • [26] Wen G., Xu Y., Ma H. Xu Z. and Tian Z.: Production of hydrogen by aqueous-phase reforming of glycerol. Int. J. Hydrogen Energy, 2008, 33, 6657-6666.
  • [27] Wang X., Li M., Wang M., Wang H., Li S., Wang S. and Ma X.: Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel, 2009, 88, 2148-2153.
  • [28] Dou B., Dupont V. and Williams P.T.: Computational fluid dynamics simulation of gas-solid flow during steam reforming of glycerol in a fluidized bed reactor. Energy & Fuels, 2008, 22, 4102-4108.
  • [29] Vaidya. P.D. and Rodrigues, A.E.: Glycerol reforming for hydrogen production: a review. Chem. Eng. Technol., 2009, 32(10), 1463-1469.
  • [30] Wang H., Wang X., Li M., Li S., Wang S. and Ma X.: Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrogen Energy, 2009, 34, 5683-5690.
  • [31] Chen H., Zhang T., Dou B., Dupont V., Williams P.T., Ghadiri M. and Ding Y.: Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. Int. J. Hydrogen Energy, 2009, 34, 7208-7222.
  • [32] Luo N., Zhao X., Cao F., Xiao T. and Fang D.: Thermodynamic study on hydrogen generation from different glycerol reforming processes. Energy & Fuels, 2007, 21, 3505-3512.
  • [33] Byrd A.J., Pant K.K. and Gupta R.B.: Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel, 2008, 87, 2956-2960.
  • [34] Xu D., Wang S., Hu X., Chen C., Zhang Q. and Gong Y.: Catalytic gasification of glycine and glycerol in supercritical water. Int. J. Hydrogen Energy, 2009, 34, 5457-5364.
  • [35] Chakinala A.G., Brilman D.W.F, van Swaaij W.P.M. and Kersten S.R. A.: Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind. Eng. Chem. Res., 2010, 49(3), 1113-1122.
  • [36] Korzhak A.V., Ermokhina N.I, Stroyuk A.L., Litvin V.I., Bukhtiyarov V.K., Manorik P.A. and Illin V.G.: Photocatalytic activity of a mesosporous TiO2/Ni composite in the generation of hydrogen from aqueous ethanol systems. Theoret. Exper. Chem., 2005, 41, 26-41.
  • [37] Patsoura A., Kondarides D.I. and Xenophon V.E.: Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today, 2007, 124, 94-102.
  • [38] Strataki N., Vlasoula B., Kostarides D.I. and Panagiotis L.: Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl. Catal. B: Environmental, 2007, 77, 184-189.
  • [39] Kondarides D.I., Daskalaki V.M., Patsoura A. and Verykios X.E.: Hydrogen production by photo-induced reforming of biomass, components and derivatives at ambient conditions. Catal. Lett., 2008, 122, 26-32.
  • [40] Daskalaki V.M. and Kondarides D.I.: Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catalysis Today, 2009, 144, 75-80.
  • [41] Li M., Li Y., Peng S., Lu G. and Li S.: Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Front. Chem. China, 2009, 4(1), 32-38.
  • [42] Bowker M., Davies Ph.R. and Al-Mazroai L.S.: Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal. Lett., 2009, 128, 253-255.
  • [43] Gombac V., Sordelli L. Montini T., Delgado J. J., Adamski A., Adami G., Cargnello M., Bernal S. and Fornasiero P.: CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. J. Phys. Chem. A, 2010, 114, 3916-3925.
  • [44] Wu Y., Lu G. and Li S.: The role of Cu(I) species for photocatalytic hydrogen generation over CuOx/TiO2. Catal Lett., 2009, 133, 97-105.
  • [45] Zaleska A.: 2010, private information.
  • [46] Anpo M.: Use of visible light. Second-generation titanium dioxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl. Chem., 2000, 72, 1787-1792.
  • [47] Nakamura I., Negishi N., Kutsuna S., Ihara T., Sugihara S. and Takeuchi K.: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chemistry, 2000, 16, 205-212.
  • [48] Chatterjee D. and Mahata A.: Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Appl. Catal., B Environmental, 2001, 33, 119-125.
  • [49] Hirai T., Suzuki K. and Komasawa I.: Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles. J. Colloid Interface Sci., 2001, 244, 262-265.
  • [50] Ohno T., Mitsui T. and Matsumura M.: Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett., 2003, 32, 364-365.
  • [51] Janus M. and Morawski A.W.: New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition. Appl. Catal. B, 2007, 75, 118-123.
  • [52] Zaleska A., Sobczak J.W., Grabowska E. and Hupka J.: Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal. B, 2007, 78, 92-100.
  • [53] Korosi L. and Dekany I.: Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids Surf. A, 2006, 280, 146-154.
  • [54] Feng G., Liu S., Xiu Z., Zhang Y., Yu J., Chen Y., Wang P. and Yu X.: Visible light photocatalytic activities of TiO2 nanocrystals doped with up-conversion luminescence agent. J. Phys. Chem. C, 2008, 112, 13692-13699.
  • [55] Rodriguez-Torres C.E., Cabrera A.F., Errico L.A., Adan C., Requejo F.G., Weissmann M. and Stewart S.J.: Local structure and magnetic behavior of Fe-doped TiO2 anatase nanoparticles: experiments and calculations. J. Phys.: Condens. Matter., 2008, 20, 135210-135219.
  • [56] Sabourin-Provost G. and Hallenbeck P.C.: High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol., 2009, 100, 3513-3517.
  • [57] Seifert K., Waligorska M., Wojtowski M. and Laniecki M.: Hydrogen generation from glycerol in batch fermentation process. Int. J. Hydrogen Energy, 2009, 34, 3671-3678.
  • [58] Siles López J.Á., de los Ángeles Martín Santos M., Chica Pérez A.F. and Martín Martín A.: Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour. Technol., 2009, 100, 5609-5615.
  • [59] Demirel S., Lucas M., Warna J., Salmi T., Murzin D. and Clausa P.: Reaction kinetics and modeling of the gold catalysed glycerol oxidation. Topics Catalysis, 2005, 44(1-2), 299-305.
  • [60] Demirel-Gulen S., Lucas M. and Claus P.: Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catalysis Today, 2005, 102-103, 166-172.
  • [61] Srivastava S., Tripathi H. and Singh K.: Ruthenium(III) catalysed oxidation of glycerol by acidified KBrO3: a kinetic study. Transition Metal Chem., 2001, 26, 727-729.
  • [62] Bianchi C.L., Canton P., Dimitratos N., Porta F. and Prati L.: Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catalysis Today, 2005, 102-103, 203-212.
  • [63] Ketchie W.C., Murayama M. and Davis R.J.: Selective oxidation of glycerol over carbon-supported AuPd catalysts. J. Catalysis, 2007, 250, 264-273.
  • [64] Liang D., Gao J., Wang J., Chen P., Hou Z. and Zheng X.: Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catalysis Commun., 2009, 10, 1586-1590.
  • [65] Prati L., Spontoni P. and Gaiassi A.: From renewable to fine chemicals through selective oxidation: the case of glycerol. Topies Catalusis, 2009, 52, 288-296.
  • [66] Zope B.N., Davis R.J.: Influence of reactor configuration on the selective oxidation of glycerol over Au/TiO2. Top Catal., 2009, 52, 269-277.
  • [67] Zheng Y., Chen X. and Shen Y.: Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem. Rev. , 2008, 108, 5253-5277.
  • [68] Corma A., Huber G.W., Sauvanaud L. and O’Connor P.: Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catalysis, 2008, 257 163-171.
  • [69] Guo X., Li Y., Shi R., Liu Q., Zhan E. and Shen W.: Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol. Appl. Catalysis A: General, 2009, 371, 108-113.
  • [70] Frusteri F., Arena F., Bonura G., Cannilla C., Spadaro L. and Di Blasi O.: Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel. Appl. Catalysis A: General, 2009, 367, 77-83.
  • [71] Watanabe M., Iida T., Aizawa Y., Aida T.M. and Inomata H.: Acrolein synthesis from glycerol in hot-compressed water. Bioresour. Technol., 2007, 98, 1285-1290.
  • [72] Tsukuda E., Sato S., Takahashi R. and Sodesawa T.: Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Commun. 2007, 8, 1349-1353.
  • [73] Kijeński J., Migdał A.R., Jamróz M.E., Tęcza W., Śmigiera E., Osawaru O. and Nemtusiak M.: Badania nad wykorzystaniem glicerolu w syntezie organicznej. Cz. I. Konwersja glicerolu do akroleiny, (Studies on utilization of glycerol in organic synthesis. Part 1. Conversion of glycerol to acrolein). Przemysł Chem., 2007, 86(4), 278-281.
  • [74] Atia H., Armbruster U. and Martin A.: Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J. Catalysis, 2008, 258, 71-82.
  • [75] Suprun W. Lutecki M., Haber T. and Papp H.: Acidic catalysts for the dehydration of glycerol: Activity and deactivation. J. Molec. Catalysis A: Chemical, 2009, 309, 71-78.
  • [76] Ulgen A. and Hoelderich W.: Conversion of glycerol to acrolein in the presence of WO3/ZrO2. Catalysts, Catal. Lett., 2009, 131, 122-128.
  • [77] Kim Y.T., Jung K.-D. and Park E.D.: Gas-phase dehydration of glycerol over ZSM-5 catalysts. Micropor. Mesopor. Mater., 2010, 131, 28-36.
  • [78] Wei Y. and Suppes G.J.: Low-pressure packed-bed gas-phase dehydration of glycerol to acrolein. Ind. Eng. Chem. Res., 2009, 48, 3279-3283.
  • [79] Kijeński J., Jamróz M.E. and Tęcza W.: Badania nad wykorzystaniem glicerolu w syntezie organicznej. Cz. II. Konwersja glicerolu do jego tert-butylowych eterów, (Studies of utilization of glycerol in organic synthesis. Part 2. Conversion of glycerol to its tert-butyl ethers). Przemysł Chem., 2007, 86(4), 282-285.
  • [80] Akiyama M., Sato S., Takahashi R., Inui K. and Yokota M.: Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Appl. Catalysis A: General, 2009, 371, 60-66.
  • [81] Huang L., Zhu Y., Zheng H., Guoqiang D. and Li Y.: Direct conversion of glycerol into 1,3-propanediol over Cu-H4SiW12O40/SiO2 in vapor phase. Catal. Lett., 2009, 131, 312-320.
  • [82] Alhanash A., Kozhevnikova E.F. and Kozhevnikov I.V.: Hydrogenolysis of glycerol to propanediol over Ru: Polyoxometalate bifunctional catalyst. Catal. Lett., 2008, 120, 307-311.
  • [83] Ma L. and He D.: Hydrogenolysis of glycerol to propanediols over highly active Ru-Re bimetallic catalysts. Top Catal., 2009, 52, 834-844.
  • [84] Luo Z-H., You X-Z., and Li H-R.: Direct preparation kinetics of 1,3-dichloro-2-propanol from glycerol using acetic acid catalyst. Ind. Eng. Chem. Res., 2009, 48, 446-452.
  • [85] Song S.H., Lee S.H., Park D.R., Kim H., Woo S.Y., Song W.S., Kwon M.S. and Song I.K.: Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas in a solvent-free batch tor: Effect of experimental conditions. Korean J. Chem. Eng., 2009, 26(2), 382-386.
  • [86] Santacesaria E., Tesser R., Di Serio M., Casale L. and Verd D.: New process for producing epichlorohydrin via glycerol chlorination. Ind. Eng. Chem. Res., 2010, 49, 964-970.
  • [87] Sakthivel A., Nakamura R., Komura K. and Sugi Y.: Esterification of glycerol by lauric acid over aluminium and zirconium containing mesoporous molecular sieves in supercritical carbon dioxide medium. J. Supercritical Fluids, 2007, 42, 219-225.
  • [88] Maris E.P., Ketchie W.C., Murayama M. and Davis R.J.: Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J. Catalysis, 2007, 251, 281-294.
  • [89] Feng J., Fu H., Wang J., Li R., Chen H. and Li X.: Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature. Catalysis Commun., 2008, 9, 1458-1464.
  • [90] Marinoiu A., Ionita G., Gaspar C.L., Cobzaru C. and Oprea S.: Glycerol hydrogenolysis to propylene glycol. React. Kinet. Catal. Lett., 2009, 97, 315-320.
  • [91] Chiu C.-W., Tekeei A., Ronco J.M., Banks M.-L. and Suppes G.J.: Reducing byproduct formation during conversion of glycerol to propylene glycol. Ind. Eng. Chem. Res., 2008, 47, 6878-6884.
  • [92] Mantzouridou F., Naziri E. and Tsimidou M.Z.: Industrial glycerol as a supplementary carbon source in the production of β-carotene by Blakeslea trispora. J. Agric. Food Chem., 2008, 56, 2668-2675.
  • [93] Deckwer W-D.: Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiology Rev., 1995, 16, 143-149.
  • [94] Celik E., Ozbay N., Oktar N. and Cüalık P.: Use of biodiesel by-product crude glycerol as the carbon source for fermentation processes by recombinant Pichia pastoris. Ind. Eng. Chem. Res., 2008, 47, 2985-2990.
  • [95] Athalye S.K., Garcia R.A. and Wen Z.: Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregular. J. Agric. Food Chem., 2009, 57, 2739-2744.
  • [96] Yu K.O., Kim S.W. and Han S.O.: Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae. Bioresour. Technol., 2010, 101, 4157-4161.
  • [97] http://cordis.europa.eu/fetch?CALLER=FP7_PROJ_EN&QZ_WEBSRCH=glycerol&USR_SORT=EN_ QVD +CHAR+DESC
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0045-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.