PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofumigation as an alternative method of crop protection

Identyfikatory
Warianty tytułu
EN
Biofumigacja jako alternatywna metoda ochrony roślin
Języki publikacji
PL
Abstrakty
PL
Zagrożenia zdrowotne związane z powszechnym stosowaniem pestycydów i nawozów sztucznych przyczyniły się do wzrostu zainteresowania alternatywnymi środkami ochrony roślin. Wśród nich coraz większe znaczenie zyskuje biofumigacja. Polega ona na wykorzystaniu naturalnych związków występujących głównie w roślinach z rodziny kapustowatych (Brassicaceae) w zwalczaniu szkodników i drobnoustrojów atakujących uprawy rolne. Ponadto korzystnie wpływają one na jakość gleby oraz wielkość plonu. Przedstawiono informacje o substancjach wykorzystywanych w biofumigacji, ich działaniu antybiologicznym oraz opisano próby praktycznego zastosowania tej metody.
EN
Health risks related to common use of pesticides and artificial fertilizers raised the interest in alteranative methods of crop protection, among them biofumigation is becoming the most important. In this process natural compounds, mainly glucosinolates degradation products from Brassica species are used to combat pests and microorganisms attacking crops. Moreover, in the case of glucosinolate degradation products also beneficial influence on soil quality and yield efficiency can be expected. This article reviews the information on compounds used in biofumigation, their biocidal activity and describes a few trials of practical application of this method.
Rocznik
Strony
527--547
Opis fizyczny
Bibliogr. 86 poz., rys., tab.
Twórcy
autor
autor
  • Katedra Chemii Analitycznej, Wydział Chemiczny, Politechnika Gdańska, ul. G. Narutowicza 11/12, 80-952 Gdańsk, tel. +48 58 347 21 10, fax +48 58 347 26 94,, jacek.namiesnik@pg.gda.pl
Bibliografia
  • [1] Rocznik statystyczny RP 2008.
  • [2] Biziuk M.: Pestycydy - występowanie, oznaczanie i unieszkodliwianie. WNT, Warszawa 2001.
  • [3] Protokół Montrealski, 1987.
  • [4] Seńczuk W.: Toksykologia współczesna. Wyd. Lekarskie PZWL, Warszawa 2005.
  • [5] Manahan S.: Toksykologia środowiska - aspekty chemiczne i biochemiczne. WN PWN, Warszawa 2006.
  • [6] Lazzeri L., Curto G., Dallavalle E., D'Avino L., Malaguti I., Santi R. i Patalano G.: Nematicidal efficacy of biofumigation by defatted Brassicaceae meal for control of Meloidogyne incognita (Kofoid et White) Chitw. on a full field zucchini crop. J. Sustain. Agr., 2009, 33, 349-358.
  • [7] Lazzeri L., Tacconi R. i Palmieri S.: In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. J. Agr. Food Chem., 1993, 41, 825-829.
  • [8] Mattner S., Porter I., Gounder R., Shanks A., Wren D. i Allen D.: Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Protect., 2008, 27, 1165-1173.
  • [9] Mercier J. i Smilanick J.: Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol. Control, 2005, 32, 401-407.
  • [10] Mercier J. i Jiménez J.: Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol. Tec., 2004, 31, 1-8.
  • [11] Schotsmans W., Braun G., DeLong J. i Prange R.: Temperature and controlled atmosphere effects on efficacy of Muscodor albus as a biofumigant. Biol. Control, 2008, 44, 101-110.
  • [12] Lacey L., Horton D. i Jones D.: The effect of temperature and duration of exposure of potato tuber moth (Lepidoptera: Gelechiidae) in infested tubers to the biofumigant fungus Muscodor albus. J. Invertebr. Pathol., 2008, 97, 159-164.
  • [13] Buena A., García-Álvarez A., Díez-Rojo M., Ros C., Fernández P., Lacasa A. i Bello A.: Use of pepper crop residues for the control of root-knot nematodes. Bioresource Technol., 2007, 98, 2846-2851.
  • [14] Łapiński A. i Dubis A.: Zastosowanie zaawansowanych metod spektralnych w badaniach antyfidantu - peraminy, jako alternatywnego środka ochrony roślin. Post. Ochr. Rośl., 2008, 48(2), 730-733.
  • [15] Boczek J.: Rośliny i mikroorganizmy źródłem insektycydów. Post. Nauk Roln., 2008, 4-5, 3-14.
  • [16] Hossain M, Ahmed S. i Hoque S.: Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J. Invertebr. Pathol., 1997, 70, 221-225.
  • [17] Takatsuka J. i Kunimi Y.: Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the Oriental Tea Tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J. Invertebr. Pathol., 2000, 76, 222-229.
  • [18] Kwa M., de Maagd R, Stiekema W., Vlak J. i Bosch D.: Toxicity and binding properties of the Bacillus thuringiensis delta-endotoxin cry1C to cultured insect cells. J. Invertebr. Pathol., 1998, 71, 121-127.
  • [19] Gough J., Akhurst R., Ellar D., Kemp D. i Wijffels G.: New isolates of Bacillus thuringiensis for control of livestock ectoparasites. Biol. Control, 2002, 23, 179-189.
  • [20] Fahey J., Zalcmann A. i Talalay P.: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 2001, 56, 5-51.
  • [21] Kirkegaard J. i Sarwar M.: Biofumigation potential of brassicas. Plant & Soil, 1998, 201, 71-89.
  • [22] van Dam N., Tytgat T. i Kirkegaard J.: Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev., 2009, 8, 171-186.
  • [23] Bellostas N., Kachlicki P., Sørensen J. i Sørensen H.: Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Hortic. Sci., 2007, 114, 234-242.
  • [24] Brown P., Tokuhisa J., Reichelt M. i Gershenzon J.: Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003, 62, 471-481.
  • [25] Cartea M., Velasco P., Obregon S., Padilla G. i de Haro A.: Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry, 2008, 69, 403-410.
  • [26] Meyer M. i Sieghard T.: Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. Eur. Food Res. Technol., 2008, 226, 1429-1437.
  • [27] Kusznierewicz B., Bartoszek A., Wolska L., Drzewiecki J., Gorinstein S. i Namieśnik J.: Partial characterization of white cabbages (Brassica oleracea var.capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins, LWT (Lebensmittel-Wissenschaft und -Technologie) - Food Sci. Technol., 2008, 41, 1-9.
  • [28] Vallejo F., Tomás-Barberán F. i García-Viguera C.: Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J. Agric. Food Chem., 2003, 51(10), 3029-3034.
  • [29] Cieślik E., Leszczyńska T., Filipiak-Florkiewicz A., Sikora E. i Pisulewski P.: Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem., 2007, 105, 976-981.
  • [30] Hansen M., Møller P., Sørensen H. i de Trejo M.: Glucosinolates in broccoli stored under controlled atmosphere. J. Amer. Soc. Host. Sci., 1995, 120(6), 1069-1074.
  • [31] Lambrix V., Reichelt M., Mitchell-Olds T., Kliebenstein D. i Gershenzon J.: The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell, 2001, 13, 2793-2807.
  • [32] Vig A., Rampa G., Thind T. i Arora S.: Bio-protective effects of glucosinolates - a review. LWT - Food Sci. echnol., 2009, 42, 1561-1572.
  • [33] Gimsing A. i Kirkegaard J.: Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem. Rev., 2009, 8, 299-310.
  • [34] Aires A., Carvalho R., Barbosa M. i Rosa E.: Suppressing potato cyst nematode, Globodera rostochiensis, with extracts of Brassicacea plants. Am. J. Potato. Res., 2009, 86, 327-333.
  • [35] Andersson D., Chakrabarty R., Bejai S., Zhang J., Rask L. i Meijer J.: Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Phytochemistry, 2009, 70, 1345-1354.
  • [36] Lambdon P., Hassall M., Boar R. i Mithen R.: Asynchrony in the nitrogen and glucosinolate leaf-age profiles of Brassica: is this a defensive strategy against generalist herbivores? Agric. Ecosyst. Environ., 2003, 97, 205-214.
  • [37] van Leur H., Raaijmakers C. i van Dam N.: A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry, 2006, 67, 1214-1223.
  • [38] Morant A., Jørgensen K., Jørgensen C., Paquette S., Sánchez-Pérez R., Møller B. i Bak S.: β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 2008, 69, 1795-1813.
  • [39] Gimsing A. i Kirkegaard J.: Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol. Biochem., 2006, 38, 2255-2264.
  • [40] Mithen R.: Glucosinolates - biochemistry, genetics and biological activity. Plant Growth Regul., 2001, 34, 91-103.
  • [41] Bones A. i Rossiter J.: The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 2006, 67, 1053-1067
  • [42] Burmeister W., Cottaz S., Driguez H., Iori R., Palmieri S. i Henrissat B.: The crystal structure of Sinapis alba myrosinase and a covalent glucosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure, 1997, 5, 663-675.
  • [43] Cheng D., Hashimoto K. i Uda Y.: In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem. Toxicol., 2004, 42(3), 351-357.
  • [44] Jones A., Winge P., Bones A., Cole R. i Rossiter J.: Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem. Molec., 2002, 32, 275-284.
  • [45] Burow M. i Wittstock U.: Regulation and function of specifier proteins in plants. Phytochem. Rev., 2009, 8, 87-99.
  • [46] IARC Handbooks of Cancer Prevention: Cruciferous vegetables, isothiocyanates and indoles. IARC Press, Lyon 2004.
  • [47] Zhang Z., Ober J. i Kliebenstein D.: The gene controlling the quantitative trait locus epithiospecifier modifier 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell, 2006, 18, 1524-1536.
  • [48] Burow M., Bergner A., Gershenzon J. i Wittstock U.: Glucosinolate hydrolysis in Lepidium sativum-identification of the thiocyanate-forming protein. Plant Mol. Biol., 2007, 63, 49-61.
  • [49] Krul C., Humbolt C., Philippe C., Vermeulen M., van Nuenen M., Havenaar R. i Rabot S.: Metabolism of singrin (2-propenyl glucosinolate) by the human colonic miroflora in a dynamic in vitro large-intestinal model. Carcinogenesis, 2002, 22(6), 1009-1016.
  • [50] Chung W., Huang J., Huang H. i Jen J.: Control by Brassica seed pomace combined with Pseudomonas boreopolis, of damping-off of watermelon caused by Pythium sp. Can. J. Plant Pathol., 2003, 25, 285-294.
  • [51] Rumberger A. i Marschner P.: 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol. Biochem., 2003, 35, 445-45.
  • [52] Warton B., Matthiessen J. i Shackleton M.: Cross-enhancement: enhanced biodegradation of isothiocyanates in soils previously treated with metham sodium. Soil Biol. Biochem., 2003, 35, 1123-1127.
  • [53] Borek V., Morra M. i McCaffrey P.: Myrosinase activity in soil extracts. Soil Sci. Soc. Am. J., 1996, 60, 1792-1797.
  • [54] Galletti S., Sala E., Leoni O., Cinti S. i Cerato C.: Aspergillus flavus transformation of glucosinolates to nitriles by an arylsulfatase and a β-thio-glucosidase. Soil Biol. Biochem., 2008, 40, 2170-2173.
  • [55] Bridges M., Jones A., Bones A., Hodgson C., Cole R., Bartlet E., Wallsgrove R., Karapapa V., Watts N. i Rossiter J.: Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc. R. Soc. Lond. B, 2002, 269, 187-191.
  • [56] Rutkowski A., Bielecka M., Kornacka D., Kozłowska H. i Roezniakowa B.: Influenceof toxic compounds of rapeseed meal on the technological properties of propionic acid bacteriac. J. Can. Inst. Food Sci. Technol., 1972, 5, 67-71.
  • [57] Smolińska U., Knudsen G., Morra M. i Borek V.: Inhibition of Aphanomyces euteiches f.sp. pisi by volatiles produced by hydrolysis of Brassica napus seed meal. Plant Dis., 1997, 81, 407-412.
  • [58] Lin C., Preston J. i Wei C.: Antibacterial mechanism of allyl isothiocyanate. J. Food Protect., 2000, 63(6), 727-734.
  • [59] Ward S., Delaquis P., Holleya R. i Mazza G.: Inhibition of spoilage and pathogenic bacteria on agar and pre-cooked roast beef by volatile horseradish distillates. Food Res. Int., 1998, 31(1), 19-26.
  • [60] Mayton H., Olivier C., Vaughn S. i Loria R.: Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Dis. Control Pest Manag., 1996, 86(3), 267-271.
  • [61] Manici L., Lazzeri L. i Palmieri S.: In vitro fungitoxic activity of some glucosinolates and their enzymederived products toward plant pathogenic fungi. J. Agr. Food Chem., 1997, 45, 2768-2773.
  • [62] Manici L., Lazzeri L., Baruzzi G., Leoni O., Galletti S. i Palmieri S.: Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag. Sci., 2000, 56, 921-926.
  • [63] Smolińska U., Morra M., Knudsen G. i James R.: Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis., 2003, 87(4), 407-412.
  • [64] Lazzeri L., Leoni O., Manici L.: Biocidal plant dried pellets for biofumigation. Ind. Crop. Prod., 2004, 20, 59-65.
  • [65] Zasada I. i Ferris H.: Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol. Biochem., 2004, 36, 1017-1024.
  • [66] Sanchi S., Odorizzi S., Lazzeri L. i Marciano P.: Effect of Brassica carinata seed meal treatment on the Trichoderma harzianum t39-Sclerotinia species interaction. Acta Hort., 2005, 698, 287-292.
  • [67] Larkin R. i Griffin T.: Control of soilborne potato diseases using Brassica green manures. Crop Protect., 2007, 26, 1067-1077.
  • [68] Mari M., Leoni O., Bernardi R., Neri F. i Palmieri S.: Control of brown rot on stonefruit by synthetic and glucosinolate-derived isothiocyanates. Postharvest Biol. Techn., 2008, 47, 61-67.
  • [69] Galletti S., Sala E., Leoni O., Burzi P. i Cerato C.: Trichoderma spp. tolerance to Brassica carinata seed meal for a combined use in biofumigation. Biol. Control, 2008, 45, 319-327.
  • [70] Lazzeri L, Curto G., Leoni O. i Dallavalle E.: Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J. Agric. Food Chem., 2004, 52, 6703-6707.
  • [71] Lugauskas A., Repečkienė J., Uselis N. i Rašinskienė A.: Problems on a longtime strawberry growing in one plot. Hort. Cultus, 2003, 2(2), 59-68.
  • [72] Mithen R., Faulkner K., Magrath R., Rose P., Williamson G. i Marquez J.: Development of isothiocyanateenriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor. Appl. Genet., 2003, 106, 727-734.
  • [73] Agerbirk N., Warwick S., Hansen P. i Olsen C.: Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry, 2008, 69, 2937-2949.
  • [74] Agerbirk N., Olsen C., Topbjerg H. i Sørensen J.: Host plant-dependent metabolism of 4-hydroxybenzylglucosinolate in Pieris rapae: Substrate specificity and effects of genetic modification and plant nitrile hydratase. Insect Biochem. Molec., 2007, 37, 1119-1130.
  • [75] Wittstock U. i Gershenzon J.: Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol., 2002, 5(4), 300-307.
  • [76] Agerbirk N., De Vos M., Kim J. i Jander G.: Indole glucosinolate breakdown and its biological effects. Phytochem. Rev., 2009, 8, 101-120.
  • [77] Muller C. i Wittstock U.: Uptake and turn-over of glucosinolates sequestered in the sawfly Athaliana rosae. Insect Biochem. Molec., 2005, 35, 1189-1198.
  • [78] de Vos M., Kriksunov K. i Jander G.: Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae. Plant Physiol., 2008, 146, 916-926.
  • [79] Henderson D., Riga E., Ramirez R., Wilson J. i Snyder W.: Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biol. Control, 2009, 48, 316-322.
  • [80] Ramirez II R., Henderson D., Riga E., Lacey L. i Snyder W.: Harmful effects of mustard bio-fumigants on entomopathogenic nematodes. Biol. Control, 2009, 48, 147-154.
  • [81] Ratzka A., Vogel H., Kliebenstein D., Mitchell-Olds T. i Kroymann J.: Disarming the mustard oil bomb. PNAS, 2002, 99(17), 11223-11228.
  • [82] Bouchereau A., Clossais-Besnard N., Bensaoud A., Leport L. i Renard M.: Water stress effects on rapeseed quality. Eur. J. Agron., 1996, 5, 19-30.
  • [83] Pereira F., Rosa E., Fahey J., Stephenson K., Carvalho R. i Aires A.: Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea Var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agr. Food Chem., 2002, 50(21), 6239-6244.
  • [84] Poulsen J., Gimsing A., Halkier B., Bjarnholt N. i Hansen H.: Mineralization of benzyl glucosinolate and its hydrolysis product the biofumigant benzyl isothiocyanate in soil. Soil Biol. Biochem., 2008, 40, 135-141.
  • [85] Gimsing A., Poulsen J., Pedersen H. i Hansen H.: Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Environ. Sci. Technol., 2007, 41(12), 4271-4276.
  • [86] Gimsing A., Sørensen J., Strobel B. i Hansen H.: Adsorption of glucosinolates to metal oxides, clay minerals and humic acid. Appl. Clay Sci., 2007, 35, 212-217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0045-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.