PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared p-on-n HgCdTe photodiodes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An enhanced original computer programme is applied to explain in detail the current-voltage characteristics of p-on-n long wavelength infrared (LWIR) HgCdTe photodiodes. The computer programme solves the system of non-linear continuity equations for carriers and Poisson equations. In the model ideal diode diffusion, generation-recombination, band-to-band tunnelling, trap-assisted tunnelling, and impact ionization are included as potential limiting mechanisms in the photodiodes. It is a clearly explained influence of extrinsic doping of an active device region on dark current-voltage characteristics and on R0A product of HgCdTe photodiodes in a wide region of temperature and wavelengths. Special attention is directed to the dependence of tunnelling probability on the shape of potential barrier within the depletion region. The theoretical predictions are compared with experimental data of high quantity photodiodes published in the available literature.
Rocznik
Strony
523--533
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warszawa, Poland, rogan@wat.edu.pl
Bibliografia
  • [1] M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, “Minority carrier lifetime in p-HgCdTe”, J. Electron. Mater. 34, 880–884 (2005).
  • [2] O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. Deborniol, and Ph. Chorier, “Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe”, J. Electron. Mater. 38, 1733–1740 (2009).
  • [3] G. Destefanis and J.P. Chamonal, “Large improvement in HgCdTe photovoltaic detector performances at LETI”, J. Electron. Mater. 22, 1027–1032 (1993).
  • [4] W. Van Roosbroeck, “Theory of the electrons and holes in germanium and other semiconductors”, Bell Syst. Tech. J. 29, 560–607 (1950).
  • [5] M. Kurata, Numerical Analysis of Semiconductor Devices, Lexington Books, Heath, 1982.
  • [6] H.K. Gummel, “A self-consistent iterative scheme for onedimensional steady state transistor calculations”, IEEE Trans. Electron Devices ED 11, 455–465 (1964).
  • [7] A. De Mari, “An accurate numerical steady-state onedimensional solution of the p-n junction”, Solid State Electronics 11, 33–58 (1968).
  • [8] Software: Semicond Devices, Dawn Technologies, Inc. California.
  • [9] Software: Apsys, Crosslight Software, Inc. Ontario, Canada.
  • [10] K. Jóźwikowski, J. Piotrowski, K. Adamiec, and A. Rogalski, “Computer simulation of HgCdTe photovoltaic devices based on complex heterostructures”, Proc. SPIE 3629, 74–80 (1999).
  • [11] K. Jóźwikowski, “Computer simulation of non-cooled long wavelength multi-junction (Cd,Hg)Te photodiodes”, Infrared Phys.&Technol. 41, 353–359 (2000).
  • [12] K. Jóźwikowski and A. Rogalski, “Effect of dislocations on performance of LWIR HgCdTe photodiodes”, J. Electron. Mater. 29, 736–741 (2000).
  • [13] K. Jóźwikowski and A. Rogalski, “Computer modeling of dualband HgCdTe photovoltaic detectors”, J. Appl. Phys. 90, 1286–1291 (2001).
  • [14] K. Jóźwikowski, W. Gawron, J. Piotrowski, and A. Jóźwikowska, “Enhanced numerical modelling of non-cooled longwavelength multi-junction (Cd,Hg)Te photodiodes”, IEEE Proc.-Circuits Devices Syst. 150, 65–71 (2003).
  • [15] A. Józwikowska, K. Józwikowski, J. Rutkowski, Z. Orman, and A. Rogalski, “Generation-recombination effects in high temperature HgCdTe heterostructure photodiodes”, Opto-Electron. Rev. 12, 417–428 (2004).
  • [16] A. Jóźwikowska, K. Jóźwikowski, J. Antoszewski, C.A.Musca, T. Nguyen, R.H. Sewell, J.M. Dell, L. Faraone, and Z. Orman, “Generation-recombination effects on dark current in CdTe passivated mid-wave infrared HgCdTe photodiodes”, J. Appl. Phys. 98, 014504 (2005).
  • [17] K. Jóźwikowski, J. Piotrowski, W. Gawron, A. Rogalski, A. Piotrowski, J. Pawluczyk, A. Jóźwikowska, J. Rutkowski, and M. Kopytko, “Generation-recombination effect in high temperature HgCdTe heterostructure non-equilibrium photodiodes”, J. Electron. Mater. 38, 1666–1676 (2009).
  • [18] J.S. Blakemore, Semiconductor Statistic, Pergamon Press, Oxford, 1962.
  • [19] R.J. McIntyre, “A new look at impact ionisation – Part I: A theory of gain, noise, breakdown probability and frequency response”, IEEE Trans. Electron Devices 46, 1623–1631 (1999).
  • [20] M.A. Kinch, Fundamentals of Infrared Detector Materials, SPIE Press, Bellingham, 2007.
  • [21] A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000.
  • [22] E.O. Kane, “Tunneling in InSb”, J. Phys. Chem. Solids 2, 181 (1960).
  • [23] E.O. Kane, “Theory of tunneling”, J. Appl. Phys. 32, 83–91 (1961).
  • [24] C.B. Duke, Tunneling in Solids, Academic Press, New York, 1969.
  • [25] R. Adar, “Spatial integration of direct band-to-band tunnelling currents in general device structures”, IEEE Trans. Electron Devices 39, 976–981 (1992).
  • [26] J.L. Moll, Physics of Semiconductors, McGraw-Hill, New York, 1964.
  • [27] C.H. Grein, M.E. Flatter, and Y. Chang, “Modeling of recombination in HgCdTe”, J. Electron. Mater. 37, 1415–1419 (2008).
  • [28] A.S. Gilmore, J. Bangs, A. Gerrish, A. Stevens, and B. Starr, “Advancements in HgCdTe VLWIR materials”, Proc. SPIE 5783, 223–230 (2005).
  • [29] T. Chuh, “Recent developments in infrared and visible imaging for astronomy, defense and homeland security”, Proc. SPIE 5563, 19–34 (2004).
  • [30] J.A. Stobie, S.P. Tobin, P. Norton, M. Hutchins, K.-K. Wong, R.J. Huppi, and R. Huppi, “Update on the imaging sensor for GIFTS”, Proc. SPIE 5543, 293–303 (2004).
  • [31] C.L. Jones, L.G. Hipwood, C.J. Shaw, J.P. Price, R.A. Catchpole, M. Ordish, C.D. Maxey, H.W. Lau, R.C. Mistry, M.C. Wilson, A.D. Parsons, J. Gillespie, L. Baggaley, and M. Wallis, “High performance MW and LW IRFPAs made from HgCdTe grown by MOVPE”, Proc. SPIE 6206, 620610 (2006).
  • [32] W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe technology: a very general solution to IR detection, described by “Rule 07”, a very convenient heuristic”, J. Electron. Mater. 37, 1407–1410 (2008).
  • [33] W. Shockley and W.T. Read, “Statistics of recombinations of holes and electrons”, Phys. Rev. 87, 835 (1952).
  • [34] Y. Nemirovsky, R. Fastow, M. Meyassed, and A. Unikovsky, “Trapping effect in HgCdTe”, J. Vac. Sci. Technol. B9, 1829 (1991).
  • [35] S.E. Schacham and E. Finkman, “Recombination mechanisns in p-type HgCdTe: Freezout and background flux effects”, J. Appl. Phys. 57, 2001–2009 (1985).
  • [36] J.L. Harthe, “The three-dimensional Poole-Frenkel effect”, J. Appl. Phys. 39, 4871–4873 (1968).
  • [37] E. Rosencher, V. Mosser, and G. Vincent, “Transient-current study of field-assisted emission from shallow levels in silicon”, Phys. Rev. B 29, 1135–1147 (1984).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0039-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.