PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fibre lasers - conditioning constructional and technological

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the actual level of fiber lasers’ development is presented. There is also presented the analysis of technological and constructional conditions that limit energy parameters of those sources. Authors also show a construction and a technological work, conducted in Poland, which led to improving energy and exploit parameters of fiber lasers.
Rocznik
Strony
491--502
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warszawa, Poland, azajac@wat.edu.pl
Bibliografia
  • [1] E. Snitzer, “Proposed fibre cavities for optical masers”, J. Appl. Phys. 32, 36–39 (1961).
  • [2] E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass”, Phys. Rev. Lett. 7, 444–446 (1961).
  • [3] P. Myslinski, J. Chrostowski, J.A. Koningstein, and J.R. Simpson, “High-power Q-switched erbium doped fiber laser”, IEEE J. Quantum Electron. 28, 371–377 (1992).
  • [4] J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voeleckel, “100-W average-power, highenergy nanosecond fiber amplifier”, Appl. Phys. B 75, 477–479 (2002).
  • [5] P.C. Becker, N.A. Olson, and J.R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology, Academic Press, Boston, 1999.
  • [6] L. Zenteno, “High-power double-clad fiber lasers”, IEEE J. Lightwave Technol. 11, 1435–1446 (1993).
  • [7] G. Larose, A. Chandonnet, and G. Lessard, “Actively Q-switched fiber laser with ASE limiting saturable absorber”, Proc. Int. Conf. on Lasers 1, 197–202 (1995).
  • [8] A. Bajarklev, Optical Fiber Amplifiers: Design and System Applications, Artech House, Boston, 1993.
  • [9] H.R. Stolen, “Nonlinearity in fiber transmission”, Proc IEEE 68, 1232–1236 (1980).
  • [10] G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, 2001.
  • [11] R.G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering”, Appl. Opt. 11, 2489–2494 (1972).
  • [12] H.R. Stolen, J.P. Gordon, W.J. Tomlinson, and H.A. Haus, “Raman response function of silica-core fibers”, J. Opt. Soc. Am. B 6, 1159–1166 (1989).
  • [13] D.. Cotter, “Stimulated Brillouin scattering in monomode optical fiber”, Opt. Commun. 4, 10–19 (1983).
  • [14] M.J. Weber, Handbook of Laser Science and Technology, Optical Materials, vol. 3, Part 1, CRC Press, Boca Raton, 1986.
  • [15] A. Tunnermann, “Status and perspectives of fiber lasers and amplifiers”, Proc. Conf. on Lasers and Electro-Optics CLEO PL1-1-MON, CD-ROM (2005).
  • [16] Y.A. Barannikov, A.I. Oussov, F.V. Shcherbina, R.I. Yagodkin, V.P. Gapontsev, and N.S. Platonov, “250W, single-mode, CW, linearly-polarized fiber source in Yb wavelength range”, Proc. Conf.on Lasers and Electro-Optics CLEO CMS3, CD-ROM (2004).
  • [17] G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion”, IEEE J. Quantum Electronics 32 (9), 1645–1656 (1996).
  • [18] E. Yahel, O. Hess, and A.A. Hardy, “Modeling and optimalization of high-power Nd3+-Yb3+ codoped fiber lasers”, J. Lightwave Technology 24 (3), 1601–1607 (2006).
  • [19] A. Tunnerman, Status and Perspectives of Fiber Lasers and Amplifiers, Cleo Europe, London, 2005.
  • [20] P.C. Becker, N.A. Olson, and J.R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology, Academic Press, Boston, 1999
  • [21] J. Limpert, “150 W Nd3+:Yb3+ codoped fiber laser at 1,1 μm”, Proc. Conf. Lasers and Electronics 1, 590–591 (2002).
  • [22] Y.G. Choi, K.H. Kim, B. Joo Lee, Y.B. Shin, Y.S. Kim, and J. Heo, “Emission properties of the Er3+: 4I11/2 ! 4I13/2 transition in Er3+- and Er3+/Tm3+ - doped Ge-Ga-As-S glasses”, Elsevier J. Non-Crystalline Solids 19, 278 (2000).
  • [23] H. Jeong, K. Oh, S.R. Han, and T.F. Morse, “Characterization of broadband amplified spontaneous emission from an Er3+– Tm3+ co-doped silica fiber”, Elsevier Chemical Physics Letters 367, 507–509 (2003).
  • [24] H. Sun, C. Yu, G. Zhou, Z. Duan, M. Liao, J. Zhang, L. Hu, and Z. Jiang, “Up-conversion luminescence analysis in ytterbium-sensitized erbium-doped oxide-halide tellurite and germanate-niobic-lead glasses”, Elsevier Spectrochimica Acta A 62, 1000–1003 (2005).
  • [25] http://www.photonics.com/content/spectra/2007/October/research/89210.aspx.
  • [26] V. Dominic, S. Mac Cormack, R.Waarts, S.Sanders, S.Bicnese, R.Dohle, E.Wolak, P.S.Yeh, and E.Zucker, “150W Fiber laser”, CLEO Eur. Conf. 1, CD-ROM (2004).
  • [27] www.ipgphotonics.com/products 2micron lasers cw tlrseries. htm.
  • [28] J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zelmer, A. Tunnermqann, J. Broeng, A. Peterson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier”, Opt. Express 12, 1313–1319 (2004).
  • [29] E. Shcherbakov, “New achievements in development of superpower industrial fiber lasers and their applications”, Proc. Conf. on Lasers and Electro-Optics TFII2-3-WED, CD-ROM (2005).
  • [30] J. Limpert, A. Liem, T. Schreiber, H. Zellmer, and A. Tunnermann, “Power and energy scaling of fiber laser systems based on ytterbium-doped large-mode-area fibers”, Advances in Fiber Lasers, Proc. SPIE 4974, 135–147 (2003).
  • [31] P. Wang, L.J. Cooper, R.B. Williams, J.K. Sahu, and W.A. Clarkson, “Helical-core ytterbium-doped fibre laser”, Electronics Letters 21, 1325–1326 (2004).
  • [32] Z. Jiang and J.R. Marciante, “Mode-area scaling of helicalcore dual-clad fiber laser and amplifiers”, Conf. on Laser & Electro-Optics 1, CD-ROM (2005).
  • [33] L.Feng, Q. Tang, L. Liang, J. Wang, H. Liang, and Q. Su, “Optical transitions and up-conversion emission of Tm3+−singly doped and Tm3+/Yb3+−codoped oxyfluoride glasses”, J. Alloys and Compounds 436, 272–277 (2007).
  • [34] S. Gonz´alez-P´erez, I.R. Mart´ın, F. Rivera-López, and F. Lahoz, “Temperature dependence of Nd3+ ! Yb3+ energy transfer processes in co-doped oxyfluoride glass ceramics”, J. Non-Cryst. Solids 353, 1951–1955 (2007).
  • [35] A. Desfarges-Berthelemot, V. Kermene, D. Sabourdy, J. Boullet, P. Roy, J. Lhermite, and A. Barth´el´emy, “Coherent combining of fiber lasers”, C. R. Physique 7, 244–253 (2006).
  • [36] Z. Chen, J. Hou, P. Zhou, and Z. Jiang, “Mutual injectionlocking and coherent combining of two individual fiber lasers”, IEEE J. Quantum Electronics 44 (6), 515–519 (2008).
  • [37] M. Kochanowicz, D. Dorosz, and J. Żmojda, “Coherent beam combining of active multicore optical fiber”, Proc of SPIE 750, CD-ROM (2009).
  • [38] H. Jeong, K. Oh, S.R. Han, and T.F. Morse, “Characterization of broadband amplified spontaneous emission from an Er3+– Tm3+ co-doped silica fiber”, Elsevier Chemical Physics Letters 367, 507 (2003).
  • [39] J. Świderski, M. Skórczakowski, A. Zając, and S. Kowalczyk, “Two cascade optical waveguide system of MOPFA type generating pulses of variable duration at the repetition frequency within the range of 50–500 kHz”, Messages 9STL, CD-ROM (2009), (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0039-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.