PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Local strain analysis in friction stir welded 2024-T3 aluminium joinsunder ciclic loading

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A geometrical notch effect and a structural notch effect have the main influence on the local stress and strain concentration in the welded joints. The value of this local stress and strain affects the fatigue life of the whole structural component. In order to mark this value using numerical or analytical methods, the local material properties from the individual zones need to be known. Friction stir welding (FSW) is a relatively new joining method derived from conventional friction welding. This method of joining materials is finding a wider interest in the various industry fields, and the properties of these joints are the object of ongoing research. In this paper, heterogeneous local strain distributions from the individual zones of a friction stir-welded sample of 2024T3 aluminum alloy are reported. Selected results of strain analysis in the form of hysteresis loops and diagrams of the plastic strain amplitude for particular joint zones for subsequent cycles are presented. The test was carried out undergradually increasing (Lo-Hi) sinusoidal cyclic loading with the stress ratio R = -1. Seven strain gauges with 0,6 mm gauge length were used to local strain measurement.
Rocznik
Strony
187--192
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Technology and Life Sciences ul. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland tel.: +48 52 3408278, fax: +48 52 3408271, robsol@utp.edu.pl
Bibliografia
  • [1] Bussu, G., Irving, P. E., The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, International Journal of Fatigue pp. 77–88, 25/2003.
  • [2] Fratini, L., Zuccarello, B., An analysis of through-thickness residual stresses in aluminium FSW butt joints, International Journal of Machine Tools & Manufacture, pp. 611–619, 46/2006.
  • [3] Jones, A., Hudd, R. C., Cyclic stress-strain curves generated from random cyclic strain amplitude tests, International Journal of Fatigue, pp. 521–530, 21/1999.
  • [4] Karakas, Ö., Morgenstern, C., Sonsino, C. M., Fatigue design of welded joints from the wrought magnesium alloy AZ31 by the local stress concept with the fictitious notch radii of rf = 1.0 and 0.05 mm, International Journal of Fatigue, pp. 2210–2219, 30/2008.
  • [5] Klimpel, A., Spawanie, zgrzewanie i cięcie metali, WNT Warszawa 1999.
  • [6] Lawrence, F. V., Estimation of fatigue crack propagation life on butt welds, Welding Journal, Research Supplement, pp. 212-220, Vol. 52/1973.
  • [7] Lawrence, F. V., Munse, W. H., Fatigue crack propagation in butt welds containing joint penetration defects, Welding Journal, Research Supplement, pp. 221-225, Vol. 52/1973.
  • [8] Maddox S. J., Recommended Hot-Spot Stress Design S-N Curves for Fatigue Assessment of FPSOs, International Journal of Offshore and Polar Engineering, TWI Limited, Granta Park, Great Abington, Cambridge CB1 6AL, UK
  • [9] Maddox, S. J., Fatigue design rules for welded structures, Progress in Structural Engineering and Materials, pp. 102-109, vol.2, no.1, 2000.
  • [10] Maddox, S. J., Review of fatigue assessment procedures for welded aluminum structures, International Journal of Fatigue, pp. 1359–1378, 25/2003.
  • [11] Meran, C., The joint properties of brass plates by friction stir welding, Materials and Design pp.719–726, 27/2006.
  • [12] Mishra, R. S., Ma, Z. Y., Friction stir welding and processing, Materials Science and Engineering, pp. 1–78, 50/2005.
  • [13] Pietras, A., Zadroga, L., Rozwój metody zgrzewania tarciowego z mieszaniem materiału zgrzeiny (FSW) i możliwości jej zastosowania, Biuletyn Instytutu Spawalnictwa pp. 148-154, Nr 5/2003.
  • [14] Pietras, A., Zadroga, L., Zgrzewanie tarciowe aluminium z miedzią, Problemy Eksploatacji – Zeszyty Naukowe Instytutu Technologii Eksploatacji, pp. 28-35, nr. 1/2004, Radom 2004.
  • [15] Pietras, A., Adamiec, J., Zgrzewanie aluminium z miedzią metodą FSW, Biuletyn Instytutu Spawalinctwa, pp. 133-137, Nr 5/2005.
  • [16] Pilarczyk, J., Nowości w technologiach spawalniczych, Inżynieria materiałowa, pp. 751-756, nr 6/2003.
  • [17] Radaj, D., Sonsino, C. M., Flade, D., Prediction of service fatigue strength of a welded tubular joint on the basis of the notch strain approach, International Journal of Fatigue, pp. 471-480, 20 No. 6 /1998.
  • [18] Santella, M. L., Engstrom, T., Storjohann, D., Pan, T.-Y., Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356, ScriptaMaterialia, pp. 201–206, 53/2005.
  • [19] Schilling, C., Sheihi, S., Dos Santos, J. F., Abspoel, M., Zgrzewanie tarciowe FSW aluminiowych zbiorników paliwa, Przegląd Spawalnictwa, pp. 14-16, 4/2003.
  • [20] Strombeck, A., Santos, J. K., Torster, F., Laureano, P., Kocak, M., Fracture toughness behaviour of FSW joints on aluminum alloys, 1st Symposium on Friction Stir Welding, Thousand Oaks, California, USA 1999.
  • [21] Thomas, W. M., Friction stir butt welding, GB patent 9125978,6.12.1991. International patent application PCT/GB92/02203.
  • [22] Thomas, W. M., Friction stir welding of ferrous materials: a feasibility study, 1st Symposium on Friction Stir Welding, Thousand Oaks, California, USA 1999.
  • [23] Thomas, W., M., Woollin, P. L., Johnson, K. I., Friction Stir Welding of Steel, Welding: a novel technique for steel, Steel World, vol. 4, nr 2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0036-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.