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Abstract 

 
In the present paper to determine the calculated fatigue limit, under non-proportional loads, there has been 

proposed a modification of the Huber-von Mises-Hencky criterion. To do so the Novoshilov interpretation of that 
criterion was applied. As an ‘effective amplitude’, there was assumed the maximum value of shear stress in the non-
proportional load cycle. There was also proposed the weight function showing preference of the directions of easy slip 
in network  A2. Verification calculations were performed for literature data. The data included experimental fatigue 
limits reported under biaxial loads, sinusoidally variable from phase shift. The present results were compared with the 
Huber-von Mises-Hencky criterion. The analysis allowed for determining that the solutions proposed demonstrate 
greater accuracy, especially under loadings of a high degree of load non-proportionality. 
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1. Introduction 
 

The application of the Huber-von Mises-Hencky criterion (HMH) to calculate the fatigue life 
and fatigue strength for non-proportional loads is problematic [1]. The criterion can be provided 
with varied physical interpretations: specific distortion strain energy, octahedral shear stress, root-
mean-square value of principle shear stresses or, in a form proposed by Novoshilov, root-mean-
square value with shear stresses on all the planes crossing the point in question [1], namely: 

 

 ���� = � ��	 
 
 ��
��� ��� ������	���	
��  , (1) 

 
where:  
 �
� – vector of shear stress, defined in plane ∆, �, � – angles describing the location of plane ∆ (Fig. 1). 
 

The last mentioned interpretation has become the springboard for a group of solutions referred 
to as integral approach. It is claimed that such approach makes it possible to use the HMH 
criterion to describe non-proportional states of loadings. The proposals in that group of criteria 



differ in their definition of ‘effective amplitude’ of shear stress �
�,�. The most common are those 
proposed by Simbürger [after 2], Zenner [after 2] and Papadopoulos [3].  

 
In Simbürger’s proposal the criterion has the form of: 

 � = ����	 
 
 ��� ��� ������	���	
�� ≤ 1 (2) 

 
where effective amplitude �� is expressed as the relationship: 
 
 �� = "#,$%&"#,'()*  (3) 

 �+,� = ,��,� + .��,�, �+,& = ,��,& + .��,& (4) 
 

 

Fig. 1. Vector of shear stress �
� on the plane defined with angles � and � 

 
Amplitudes and mean values of normal and shear stresses in (4) are determined based on the 

longest view method [4]. Zenner proposed a similar solution: 
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The Papadopoulos criterion is a sum of the greatest in all the planes ∆ (Fig. 1) generalized 

amplitude of shear stress and maximum stress hydrostatic: 
 

 ���,� = 1,6�,
78�9 + ,�:,&�; ≤ 3<5 (6) 
 
Generalized amplitude of shear stress for each plane ∆ is determined from: 
 

 8�7�, �9 = ��	 
 ���7�, �, =9�=�	>��  (7) 

where: 
 

 ��7�, �, =9 = �� ?1,6@�7�, �, =, A9 − 1,6@�7�, �, =, A9C (8) 
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2. Criterion proposal 
 
The present paper analyses the simplest solution assuming in (1), for each direction �, 

maximum value of shear stress �
� = 1,6@��
�� throughout the cycle. The criterion assumed the 
form of: 

 

 ���,� = � ��	 
 
 �1,6@��
�� �� ��� ������	���	
�� ≤ 345 (9) 

 
For the states of stress of the components defined in line 6 table 1, the evolution of 

instantaneous values of stresses �
� for DA = 0, 30, 60 and 90°, has been presented respectively in 
Fig. 2.a, b, c and d. Hodograph for maximum values 1,6@��
�� of that state of stress is visible in 
Fig. 2.e. 
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Fig. 2. Geometric form of weight function  (inside) against the respective maximum values of shear stresses 
throughout the loading cycle (outside) 

 

Besides, the present paper proposes the solution with weight function M demonstrating the 
preference of the directions of easy slip <111> in crystallographic network A2. The weight 
function has been assumed in a form of: 

 

 M = M& + M� ∙ ����27� − P 2⁄ 9�� ∙ ����27� − P 2⁄ 9��
 (10) 

 
Its geometric form for value M& = 0, M� = 1 has been presented in Fig. 3. 
The weight function must get oriented in such a way as to make its location against to the 

hodograph of the loading correspond to the situation of the least favourable location of the 
crystalline structure of the grain. The function must be rotated in a way as to make the direction of 



one of its maxima coincide with the direction of the maximum value of the loading throughout the 
cycle. The geometric form of the rotated weight function against the maximum shear stresses is 
presented in Fig. 4. 

 

 

Rys. 3. Geometric form of weight function M 
 

The value of shear stress in equation (1) is determined, thus: 
 

 �
� = 1,6@��
�� ∙ M  (11) 
 
Finally, the assumed value of the fatigue limit is obtained from: 
 

 ���,� = � ��	 
 
 �1,6@��
�� ∙ M �� ��� ������	���	
�� ≤ 345 (12) 

 

 

 

Fig. 4. Geometric form of the weight function  (inside) against the respective maximum values of shear stresses in  
the loading cycle (outside) 

 
 



3. Results 
 
The calculations were made for literature data [5], see breakdowns in columns 1, 2 and 3 Table 

1. Those are the amplitudes of normal and shear stresses obtained from bending and torsion with 
phase-shift. Lines from 1 to 8 concern material ‘mild steel’ demonstrating properties Zso = 
137.3 MPa, Zgo = 235.4 MPa as well as Zso/Zgo =  0.58, and lines from 9 to 18 concern material 
‘hard steel’ demonstrating properties Zso = 196.2 MPa, Zgo = 313.9 MPa as well as Zso/Zgo = 0.63. 
For the purpose of the calculation of the values of coefficients in the equation of the weight 
function (10), there was assumed wS = 0,95, wU = 0,05. 

The results of the calculations have been broken down in Table 1. In columns 4, 5 and 6 there 
have been noted the assumed values of fatigue limits, respectively, for the fatigue limits, 
respectively, for HMH criterion and both proposals. In columns 7, 8 and 9 there was noted a 
relative error of the calculated fatigue limit against the fatigue limit obtained experimentally.  

One can note that for the proportional loadings (the angle of the phase shift equal 0) the results 
obtained with HMH criterion and the solution proposed (9) are identical. However, for non-
proportional loadings the HMH criterion gives worse results. 

The present results have been described with the mean value and standard deviation. For the 
HMH criterion the mean error value is 4.7% and standard deviation – 4.2%. For the criterion in 
integral form without weight function the results are better. There were obtained, respectively, 
1.7% of the mean error value and 2.2% of the standard deviation. As for the criterion in an integral 
form with the weight function, the present results demonstrate the lowest mean error value – 0.3% 
and standard deviation of 2.2%. 
 

Table 1. Results of calculations of the fatigue limit estimate 

 

Item 

Nisihary data [3]  Calculated fatigue limit 
Relative terror of the calculated 

fatigue limit 

�;,� �;V,� W HMH max7�
�9 max7�
�9∙ M 
HMH max7�
�9 max7�
�9∙ M 

MPa MPa ° MPa MPa MPa % % % 
 1 2 3 4 5 6 7 8 9 
1 99.9 120.9 0 232.0 232 227 -1.4 -1.4 -3.6 
2 103.6 125.4 60 240.6 231.6 226.9 2.2 -1.6 -3.6 
3 108.9 131.8 90 252.9 239.7 234.9 7.4 1.8 -0.2 
4 180.3 90.2 0 238.6 238.6 234 1.3 1.3 -0.6 
5 191.4 95.7 60 253.2 240.4 235.9 7.6 2.1 0.2 
6 201.1 100.6 90 266.1 247 242.4 13.0 4.9 3.0 
7 213.2 44.8 0 226.9 226.9 222.9 -3.6 -3.6 -5.3 
8 230.2 48.3 90 244.9 239 234.9 4.0 1.5 -0.2 
9 138.1 167.1 0 320.7 320.7 314.3 2.2 2.2 0.1 
10 140.4 169.9 30 326.1 321.9 315.5 3.9 2.5 0.5 
11 145.7 176.3 60 338.3 325.6 319 7.8 3.7 1.6 
12 150.2 181.7 90 348.7 330.5 323.8 11.1 5.3 3.2 
13 245.3 122.7 0 324.6 324.6 318.6 3.4 3.4 1.5 
14 249.7 124.9 30 330.4 324.7 318.8 5.2 3.4 1.6 
15 252.4 126.2 60 333.9 317 311.2 6.4 1.0 -0.9 
16 258 129 90 341.3 316.9 311 8.7 1.0 -0.9 
17 299.1 62.8 0 318.3 318.3 312.8 1.4 1.4 -0.4 
18 304.5 63.9 90 324.0 316.2 310.8 3.2 0.7 -1.0 



 
 

Fig. 5. Geometric form of weight function  (inside) against the respective maximum values of shear stresses  
throughout the loading cycle (outside) 

 
 

4. Conclutions 
 

1. The modification of the Novoshilov criterion involving the assumption the ‘effective 
amplitude’ in a form of the greatest value of shear stress in the cycle, enhanced the 
results of estimating the fatigue limit as compared with the Huber-von Mises-Hencky 
criterion, especially in the case of the loadings of a maximum degrees of non-
proportionality of the loading.  

2. The application of the weight function demonstrating the preference for the directions 
of easy slip in network A2 caused a further decrease in error of the estimated assumed 
value of the fatigue limit. Unfortunately, for the proportional loadings when the phase 
shift angle equals 0, there was recorded a slight deterioration of the results. 
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