PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TEM investigations of damage structure of pure gold after nitrogen plasma immersion ion implantation (PIII) using RF discharges

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents experimental results concerning microstructural changes caused by PIII. Thus, the main aim of these experiments was to make preliminary investigations of structural damage introduced by N+ PIII into gold in such circumstances where precipitation processes are not available and structural damage only exists. After e1ectropo1ishing Au foi1s with a [100] preferred orientation were PIII imp1anted to a total dose of 2×1017 N+ ions/cm2. Gold was used in the present study for three reasons: first, the noble character of gold will minimize contamination prob1ems, second, thus far there are no definite evidence about gold nitride formation even when the dose was as high as 2×1018 N+/cm2, and third, theoretica1 ca1cu1ations give for this metal the highest interstitial and substitutional solubility. It has been observed that pure gold after nitrogen PIII contains a great deal of small gas bubbles. These bubbles can grow as a result of their migration, consequent collision and coalescence. It may be assumed that bubble creation, migration, coalescence and growth can best be reduced by the introduction of stable precipitates into the metal.
Rocznik
Strony
87--94
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Technology and Life Sciences, ul. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland Department of Materials Science and Engineering Mechanical Engineering Faculty, lawry@utp.edu.pl
Bibliografia
  • 1. Anttila, A. et al., Nitrogen implantation of metals, J. Appl. Phys., 57, pp. 1423-1425, 1985.
  • 2. Baragiola, Ra, A., Invited review: Some challenging unsolved problems in atomic collisions in solids, Nuclear Instruments and Methods in Physics Research B 237, pp. 520–524, 2005.
  • 3. Bogaerts, A., Neyts, E., Gijbels, R., Joost van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta Part B 57, pp. 609–658, 2002.
  • 4. Calder, A.F., Bacon, D.J., Phythian, W.J., English, C.A., Collapse of cascades produced by low-energy ion irradiation of gold, Vacuum, vol.39, pp. 1115-1118, 1989.
  • 5. Colligon, J.S., Surface modification by ion beams, Vacuum, vol.36, pp. 413-418, 1986.
  • 6. Conrad, J. R. et al., Plasma source ion-implantation technique for surface modification of materials, J. Appl. Phys., vol. 62, pp. 4591-4596, 1987.
  • 7. Conrad, J.R., Plasma Source Ion Implantation: A New Approach to Ion Beam Modification of Materials, Materials Science and Engineering, A116, pp. 197-203, 1989.
  • 8. Conrad, J.R. et al., Plasma source ion implantation dose uniformity of a 2x2 array of spherical targets, J. Appl. Phys., vol. 65, pp. 1707-1712, 1989.
  • 9. El-Hossary, F. et al., Plasma nitriding of stainless steel using continuous and pulsed rf glow discharge, Surface Engineering, vol.4, pp. 150-154, 1988.
  • 10. Hanley, L., Sinnott, S. B., The growth and modification of materials via ion–surface processing, Surface Science 500, pp. 500–522, 2002.
  • 11. Jäger, W., Merkle, K.L., Defect-cluster formation in high-energy-density cascades in gold, Philosophical Magazine A, vol.57,pp. 479-498, 1988.
  • 12. Kelly, R., Factors determining the compound phases formed by oxygen or nitrogen implantation in metals, J. Vac. Sci. Technol., 21, pp. 778-789, 1982.
  • 13. Kiss, A.Z. et al., Avoidance of blister formation in targets backings during alfa-particle bombardment, Nuclear Instruments and Methods, 203, pp. 107-108, 1982.
  • 14. Lopez-Heredia, M.A., Legeay, G., Gaillard, C., Layrolle, P., Radio frequency plasma treatments on titanium for enhancement of bioactivity, Acta Biomaterialia, 4 pp. 1953–1962, 2008.
  • 15. Marwick, A.D., Pilier, R.C., Sivell, P.M., Mechanisms of radiation-induced segregation in dilute nickel alloys, Journal of Nuclear Materials, vol. 83, pp. 3541, 1979.
  • 16. Nono, M.C.A., Corat, E.J., et al, Surface modification on 304 SS by plasma-immersed ion implantation to improve the adherence of a CVD diamond film, Surface and Coatings Technology 112, pp. 295–298, 1999.
  • 17. Ruault, M.O., Bernas, H., Chaumont, J., Transmission electron microscopy study of damage by ion implantation in gold . Evidence for a spike threshold, Philosophical Magazine A. vol.36, pp. 757-783, 1979.
  • 18. Seeger, A., Radiation Damage in Solids, vol. l, IAEA, Vienna, 1962.
  • 19. Seidman, D.N., Averback, R.S., Benedek, R., Displacement Cascades. Dynamics and Atomic Structure, Phys. Stat. Sol.B, 144, pp. 85-103, 1987.
  • 20. Tan, L., Crone, W.C., Surface characterization of NiTi modified by plasma source ion implantation, Acta Materialia 50, pp. 4449–4460, 2002.
  • 21. Tendys, J., Donnelly, I.J., Kenny, M.J., Pollock, T.A., Plasma immersion ion implantation using plasmas generated by radio frequency techniques, Appl. Phys. Lett., 53, pp. 2143-2145, 1988.
  • 22. Tian, X.B., Chub, P.K., Fub, R., Yang, S.Q., Hybrid processes based on plasma immersion ion implantation: A brief review, Surface & Coatings Technology, 186, pp. 190– 195, 2004.
  • 23. Williams, J.S., Poate, J.M., Ion Implantation and Beam Processing, Academic Press, Sydney, New York, London, 1984.
  • 24. Yankov, R.A., Shevchenko, N., et al, Reactive plasma immersion ion implantation for surface passivation, Surface & Coatings Technology 201, pp. 6752–6758, 2007.
  • 25. Zhu, S., Huang, N., Shu H., Wua, Y., Xu, L., Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA, Applied Surface Science, 256, pp. 99–104, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0036-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.