PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza funkcjonowania wymiennika ciepła wykorzystującego rury intensyfikujące wymianę ciepła w warunkach osadzania się zanieczyszczeń

Identyfikatory
Warianty tytułu
EN
Performance analysis of heat exchangers with enhanced heat transfer surfaces under fouling conditions
Języki publikacji
PL
Abstrakty
PL
Analizie poddano wpływ procesu osadzania się zanieczyszczeń na rozwiniętych powierzchniach wewnętrznych rur, szczególnie rur z wkładkami ze skręconej taśmy na wymianę ciepła. Osadzanie się niepożądanych cząstek zanieczyszczeń na powierzchniach wymiennika ciepła może powodować zwiększenie oporów cieplnych, a przez to redukować natężenie wymiany ciepła. Rosną także opory przepływu przez wymiennik. Jak wynika z badań osady powstają na wszystkich elementach wymiennika, także na wkładkach wewnątrz rury. Grubość warstwy osadu jest inna na różnych częściach wymiennika, także rodzaj osadzania jest odmienny. Warunki działania wymiennika, takie jak temperatura, przerywana praca, czas, prędkość przepływu, wibracje mają wpływ na osadzanie zanieczyszczeń.
EN
Fouling process has been analyzed with special attention to enhanced heat transfer surfaces, like inner tube surfaces especially with twisted tape inserts. Fouling deposits formed on heat transfer surfaces have a low thermal conductivity and their presence reduces the equipment efficiency. Pressure drop characteristics of a heat exchanger are also disturbed. Fouling deposits arę present on all elements of an exchanger including twisted tape inserts. Thickness of a deposit layer differs for various places inside an exchanger, also different types of fouling may occur. Heat exchanger working conditions, like temperature, interrupted work, time, flow velocity, vibration have an influence on fouling.
Rocznik
Strony
12--18
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Politechnika Łódzka Katedra Techniki Cieplnej i Chłodnictwa
Bibliografia
  • [1] BFERGLES A.E.: Ex HFT for fourth generation heat transfer technology. Experimental Thermal and Fluid Science, 26, 2002, s. 335+344.
  • [2] MANGI.IK R.M.: Heat Transfer Enhancement. W książce: BEAN A., KRAUS A.D.(Eds.): Heat Transfer Handbook, John Wiley&Sons, Hoboken, New Jersey, 2003.
  • [3] BERGLES A.E.: Techniques to Enhance Heat Transfer. W książce: ROHSENOW W.M., HARTNETT J.P., CHO Y.I. (Eds.): Handbook of Heat Transfer, third ed., McGraw-Hill, New York, 1998.
  • [4] BERGLES A.E.: Heat transfer enhancement - the encouragement and accommodation of high heat fluxes. Trans. ASME, J. Heat Transfer, 119, 1997, s. 8+19.
  • [5] ZAWADZKI A., PLOCEK M.: Aktualne tendencje intensyfikacji wymiany ciepła w chłodniczych wymiennikach ciepła. Chłodnictwo & Klimatyzacja, 9, nr 12(82), 2004, s. 30+37.
  • [6] WEBB R.L.: Advances in sheet side boiling of refrigerants. ]. Inst. Refrigeration, 87, 1991, s. 75+86.
  • [7] WEBB R.L., KIM N.-H.: Fouling of heat transfer surfaces. W książce: WEBB R.L., KIM N.-H.: Principles of Enhanced Heat Transfer, second ed., Taylor&Francis, New York, 2005.
  • [8] WEBB R.L., KIM N.-H.: Fouling on enhanced surfaces. W książce: WEBB R.L., KIM N.-H.: Principles of Enhanced Heat Transfer, second ed., Taylor&Francis, New York, 2005.
  • [9] BANSAL B., CHEN X.D., MULLER-STEINHAGEN H.: Analysis of classical deposition rate law for crystallization fouling. Chemical Engineering and Processing, 47, 2008, s. 1201+1210.
  • [10] BOTT T.R.: Aspects of Crystallization Fouling. Experimental Thermal and Fluid Science, 14,1997, s. 356+360.
  • [11] BOTT T.R., GUDSUMDSSON J.S.: Deposition of Paraffin Wax from Kerosene in Cooled Heat Exchanger Tubes. Can. J. Chem. Eng., 55, 1977, s. 381+385.
  • [12] SOMERSCALES E.F.C.: Fundamentals of Corrosion Fouling. Experimental Thermal and Fluid Science, 14, 1997, s. 335+355.
  • [13] SOMERSCALES E.F.C., KASSEMI M.: Fouling Due to Corrosion Products Formed on a Heat Transfer Surface. Trans. ASME, J. Heal Transfer, 109,1984, s. 267+270.
  • [14] KIM N.-H., WEBB R.L.: Particulate fouling of water in tubes having a two-dimensional roughness geometry. Int. J. Heal Mass Transfer, 34(11), 1991, s. 2727+2738.
  • [15] SOMERSCALES E.F.C., PONTEDURO A.F., BERGLES A.E.: Particulate fouling of heat transfer tubes enhanced on their inner surface. Fouling and Enhancement Interactions HTD-Vol.l64, 1991, s. 117+128.
  • [16] CHAMRA L.M., WEBB R.L.: Modeling liquid-side particulate fouling in enhanced tubes. Int. J. Heat Mass Transfer, 37 (4), 1994, s. 571.
  • [17] WATKINSON A.P.: Fouling of augmented heat transfer tubes. Heat Transfer Engineering, 11 (3), 1990, s. 57+65.
  • [18] RABAS T.J., PANCHAL C.B., SASSCER D.S., SCHAEFF.R R.: Comparison of power-plant condenser cooling-water fouling rates for spirally indented and plain tubes. Fouling and Enhancement Interactions, HTD-vol.l64, 1991, s. 29+37.
  • [19] HAIDER S.I., WEBB R.L., MEITZ A.K.: An experimental study of tube-side fouling resistance in flooded water chiller evaporators. ASHRAE Transactions, 98 (part 2), 1992, s. 86+103.
  • [20] WEBB R.L., LI W.: Fouling in enhanced tubes using cooling tower water. Part L long-term fouling data. Int. Heat Mass Transfer, 43, 2000, s. 3567+3578.
  • [21] LI W., WEBB R.L.: Fouling in enhanced tubes using cooling tower water. Part 11: combined particulate and precipitation fouling. Int. J. Heat Mass Transfer, 43, 2000, s. 3579+3588.
  • [22] LI W., WEBB R.L.: Fouling characteristics of internat helical-rib roughness tubes using low-velocity cooling tower water. Int. J. Heat Mass Transfer, 45, 2002, s. 1685+1691.
  • [23] HERZ A., MALAYERI M.R., MULLER-STEINHAGEN H.: Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous Solutions. Energy Conversion and Management, 49, 2008, s. 3381+3386.
  • [24] WEBB R.L.: Single-phase heat transfer, friction, and fouling characteristics of three-dimensional cone roughness in tub flow. Int. J. Heat Mass Transfer, 52, 2009, s. 2624+1631.
  • [25] APARAJITH H.S., BALAJI C., RAGHAYAN V.R.: Performance analysis of extended surfaces subjected to fouling. Heat and Mass Transfer, 37, 2001, s. 499+505.
  • [26] AL-HADHRAMI L.M., AHMAD A., AT.-O.AHTAM A.: Performance analysis of heat exchangers of an existing naphtha hydro treating plant: A case study. Applied Thermal Engineering, 30, 2010, s. 1029+1033.
  • [27] ABU-ZAID M.: Water fouling in natural convection conditions. Int. Comm. Heat Mass Transfer, 30, No. 7, 2003, s. 1005+1014.
  • [28] LI W: The internal surface area basis, a key issue of modeling fouling in enhanced heat transfer tubes. Int. J. Heat Mass Transfer, 46, 2003, s. 4345+4349.
  • [29] LI W.: Modeling liquid-side particulate fouling in internal helical tubes. Chemical Engineering Science, 62, 2007, s. 4204+4213.
  • [30] LI W„ LI G.: Modeling cooling tower fouling in helical-rib tubes based on Von-Karman analogy. Int. J. Heat Mass Transfer, 53, 2010, s. 2715+2721.
  • [31] KAPTAN Y, BUYRUK E., ECDER A.: Numerical investigation of fouling on cross-flow heat exchanger tubes with conjugated heat transfer approach. Int. Comm. Heat Mass Transfer, 35, 2008, s. 1153+1158.
  • [32] PAHLAYANZADEH H., JAFAR1 NASR M.R., MOZAF-FARI S.H.: Experimental study of thermo-hydraulic and fouling performance of enhanced heat exchangers. Int. Comm. In Heat and Mass Transfer, 34, 2007, s. 907+916.
  • [33] MOFFAT R.J.: Describing the Uncertainties in Experimental Results. Experimental Thermal and Fluid Science, l, 1988, s. 3+17.
  • [34] GNTFIŃSKI V.: New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. Int.Chem.Eng., 16, 1976, s. 359+368.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0036-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.