PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka wykorzystania fluidyzacji i procesów pokrewnych w produkcji żywności ze szczególnym uwzględnieniem obróbki chłodniczej (ciąg dalszy artykułu z numeru 9/2010)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Rocznik
Strony
6--10
Opis fizyczny
Bibliogr. 100 poz., rys.
Twórcy
autor
autor
  • Katedra Chłodnictwa i Energetyki Przemysłu Spożywczego Uniwersytet Przyrodniczy w Lublinie
Bibliografia
  • [1] ANDERSON B.A., S1NGH R.R, 2006a: Modeling the thawing of frozen foods using air impingement technology. International Journal of Refrigeration, 29, pp. 294-304.
  • [2] ANDF.RSON B.A., SINGH R.R, 2006b: Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. International Journal of Refrigeration, 29, pp. 281-293.
  • [3] ANGIOLETTI M., Di TOMMASO R.M., NINO E., RU-OCCO G., 2003: Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets. International Journal of Heat and Mass Transfer 46, pp. 1703-1713.
  • [4] Anonim 2001: Impingement freezing, Real-world Solutions for processing dilemmas, Solutions, 2(1), pp. 6-7, May.
  • [5] Anonim 2009: The best is even Belter; The next generation spiral freezer. Schiller & proffer, Materiały promocyjne Frigoscandia.
  • [6] AZEYEDO L. F. A., WEBB B. W„ QUEIROZ M., 1994: Pulsed air jet impingement heat transfer. Experimental Thermal and Fluid Science, pp. 206-213.
  • [7] BAUGHN I.W., SHIM1ZU S., 1989: Heat transfer measurements from a surface with uniform heat flux and an impinging jet. Journal of Heat Transfer, 111, pp. 1096-1098.
  • [8] BAUGHN J.W., MESBAH M., YAN X., 1993: Measurements of local heat transfer for an impinging jet on a cylindrical pedestal. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 239, pp. 57-62.
  • [9] BAYDAR E., OZMEN Y., 2005: An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers. Applied Thermal Engineering, 25, pp. 409-421.
  • [10] BIRCH A.D., CLEAYER R.R, FAIRWEATHER M., HAR-GRAYE G.K., 2005: Velocity and concentration field measurements in turbulent, impinging flammable jet. Chemical Engineering Science, 60, pp. 219-230.
  • [11] BRAUD L.M., MOREIRA R.G., CASTELL-PEREZ M.E., 2001: Mathematical modelling of impingement drying of corn tortillas. Journal of Food Engineering, 50, pp. 121 -128.
  • [12] CHAN T.L., LEUNG C.W., JAMBUNATHAN K., ASHFORTH-FROST S., ZHOU Y., LIU M. H., 2002: Heat transfer characteristics of a slot jet impinging on a semi-circular convex surface. International Journal of Heat and Mass Transfer, 45, pp. 993-1006.
  • [13] CHASF. G., 2004: Solids notes 5, The University of Akron. http://dissertations.ub.rug.nl/FILES/faculties/science/2004/c.dechsiri/c2.pdf.
  • [14] CIBOROWSKI J., 1957: Fluidyzacja, PWT, Warszawa.
  • [15] COOPER D., JACKSON U.C., LAUNDER, B.E., LIAU G.X., 1993: Impinging jet studies for turbulence model assessment-I. Flow field experiments. International Journal of Heat and Mass Transfer, 36(10), pp. 2675-2684.
  • [16] CORONEL L.,E., SATOSH1 T., 2004: Drying the okara in a spouted bed. Drying, 2004 - Proceedings of the 14th International Drying Symposium (IDS 2004) Sao Faulo, Brazil, C, pp. 1767-1775, 22-25 August.
  • [17] CRAFT T.J., GRAHAM L.J.W., LAUNDER B.F,., 1993: Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models. International Journal of Heat and Mass Transfer, 36(10), pp. 2685-2697.
  • [18] DEYAHASTIN S., MUJUMDAR A.S., 1999: Some hydrodynamic and mixing characteristics of a pulsed spouted bed dryer. Powder Technology, 1003, pp. 169-174.
  • [19] DIRITA C., DE BONIS M.V., RUOCCO G., 2007: Analysis of food cooling by jet impingement, including inherent conduction. Journal of Food Engineering, 81, pp. 12-20.
  • [20] DOWNS S.J., JAMES E.H., 1987: Jet impingement heat transfer a literature survey. American cooling of finite slab shaped objects and effect of spatial variation of heat transfer coefficient. Journal of Food Engineering, 71, pp. 287-294.
  • [22] ERDOGDU E, FERRUA M., SINGH S.K., SINGH R.P., 2007: Air-impingement cooling of boiled eggs: Analysis of flow visualization and heat transfer. Journal of Food Engineering, 79, pp. 920-928.
  • [23] FUJIMOTO H., HATTA N., YISKANTA R., 1999: Numerical simulation of convective heat transfer to a radial free surface jet impinging on a hot solid. Heat and Mass Transfer, 35, pp. 266-272.
  • [24] GOMEZ T. M„ CALYELO A., 1982: On the ice growth mechanism during beef freezing. Buli. IIR Ann. Hamilton.
  • [251 GÓRAL D., KLUZA E, 2003: Technika odwróconej fluidyzacji w rozmrażaniu produktów rolniczych i spożywczych. Technica Agraria 2(1), s, 23-31.
  • [26] GÓRAL D., KLUZA E, 2004: Eksperymentalna identyfikacja funkcjonowania chłodniczego systemu impingement. Inżynieria Rolnicza, 5(60), s. 117-124.
  • [27] GÓRAL D., KLUZA E., 2005a: Kompleksowa obróbka zamrażalnicza czosnku przy użyciu metody impingement. VIII Między Narodowa Konferencja Naukowa, Teoretyczne i aplikacyjne problemy inżynierii rolniczej, Wrocław - Polanica Zdrój. Tom l, s. 208-210, 21-24 czerwca.
  • [28] GÓRAL D., KLUZA E, 2005b: Techniczne i technologiczne uwarunkowania chłodniczej obróbki produktów rolniczych metoda impingement. Jubileuszowa międzynarodowa konferencja naukowa, XXXV lat Wydziału Inżynierii Produkcji AR Lublin, s. 207-208.
  • [29] GÓRAL D., KLUZA E, 2006a: Kompleksowa obróbka zamrażalnicza czosnku przy użyciu metody impingement. Inżynieria Rolnicza, 2, s. 347-354.
  • [30] GÓRAL D., KLUZA E, 2006b: Physical changes of vegetables during freezing by conventional and impingement methods. Acta Agrophysica, 7(1), s. 59-71.
  • [31] GÓRAL D., STADNIK Ł., 2007a: Próba analizy zależności wyróżników jakości selera naciowego (Apium graveoles L. var. Dulce (Mili.) Pers.) i chrzanu pospolitego (Cochleria armoracja L.) od zamrażania metodą odwróconej fluidyzacji oraz zamrażalniczego przechowywania. Chłodnictwo, tom XLII, 7, s. 56-59.
  • [32] GÓRAL D., STADNIK L., 2007b: Zależność wybranych cech mechanicznych marchwi (Daucus carota L.) i pietruszki zwyczajnej (Petroselinum sativum HOFFM.) od kinetyki obróbki chłodniczej metoda odwróconej fluidyzacji. Acta Scientiarum Polonorum, Technika Agraria, 6(1), s. 17-24.
  • [33] GORDON R., AKFIRAT J.C., 1965: The role of turbulence in determining the heat-transfer characteristics of impinging jets. International Journal Heat Mass Transfer, 8, pp. 101-108.
  • [34] GORI E, BOSSI L., 2000: On the cooling effect of an air jet along the surface of a cylinder. International Communications in Heat and Mass Transfer, 27(5), pp. 667-676.
  • [35] GRUDA Z., POSTOLSKI J., 1999: Zamrażanie żywności, WNT Warszawa.
  • [36] HILL M.J.W., ABRAMAMSON J., JORDAN P.J., 2003: Modeling of air flow and pollen collection by a single kiwi fruit flower under wing and an air jet, December.
  • [37] HU Z., SUN D.-W., 2001: Effect of fluctuation in inlet temperature on CFD simulation of air-blast chilling process. Journal of Food Engineering, 48, pp. 311-316.
  • [38] JAMBUNATHAN K., LAI E., MOSS M.A., BUTTON B.L., 1992: Review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow, 13(2), pp. 106-115.
  • [39] KANG S.H., GREIF R., 1992: Flow and heat transfer to a circular cylinder with a hot impinging air jet. International Journal of Heat and Mass Transfer, 35(9), pp. 2173-2183.
  • [40] KARLSSON S., NIKLASSON BJORN L, FOLESTAD S., RASMUSON A., 2006: Measurement of the particle movement in the fountain region of a Wurster type bed. Powder Technology, 165, pp. 22-29.
  • [41] KETTERINGHAM L., JAMES S., 2000: The use of high thermal conductivity inserts to improve the cooling of cooked foods. Journal of Food Engineering, 45, pp. 49-53.
  • [42] KLUZA E, 1987: Untersuchungen der Aufprallverfahren in Hinsicht auf Nutzbarkeit fur Wirbelschichtverfahren. Interner Bericht, BFA fur Erniihrung Karlsruhe.
  • [43] KLUZA E, 1995: Modyfikacja fluidyzacji pod katem zwiększenia efektywności procesów ogrzewania i chłodzenia produktów rolniczych. Raport z badań w ramach działalności statutowej TKS/DS./4.
  • [44] KLUZA E, 1997: Analiza możliwości wykorzystania procesu impingement jako metody suszenia produktów rolniczych. Ogólnopolska Konferencja Naukowa, Wrocław - Otmuchów s. 115.
  • [45] KLUZA E, 1999: Preliminary evaluation of impingement method utility for food freezing. Proceedings of the International Congress, Improved Traditional Foods for the Next Century, Valencia, Spain, pp. 406-408, 28-28 October.
  • [46] KLUZA E, GÓRAL D., DOMIN M., NAKONIECZNY P., 2007: Optymalizacja warunków prowadzenia procesu oraz charakterystyka zjawisk towarzyszących odwróconej fluidyzacji. Sprawozdanie merytoryczne do raportu końcowego z realizacji projektu badawczego Nr 2P06T04726, s. 4-15.
  • [47] KLUZA F., GÓRAL D., 2009: Urządzenie do obróbki żywności. Patent RP nr B l 201080.
  • [48] KLUZA K, SPIESS W.E.L., 1991: Studies on the use of a modified spouted bed to dry food. 8th World Congress of Food Science and Technology, Toronto Canada, P138, 29 September-4 October.
  • [49] KLUZA E, SPTESS W.E.L,, 1995: Investigation on heat transfer coefficient during heat processing of food involving impingement method. 9th Word Congress of Food Science and Technology, Symposium subject 35, Rcg.451/181, Abstracts of Lectures and Posters, 2, pp. 47.
  • [50] KLU7.A E, STADNIK Ł., 2009: Experimental formation of bed under jet tube fluidization conditions used for food cooling and freezing. Electronic Journal of Polish Agricultural Universities, 12.
  • [51] KMIEĆ A., 1975: Simultaneous Heat and mass transfer in spouted beds. The Canadian Journal of Chemical Engineering, 53, pp. 18-24.
  • [52] KMIEĆ A., 1976; Równoczesna wymiana ciepła i masy w układach fluidalnych fontannowych. Inżynieria Chemiczna VI, 3, s. 497-516.
  • [53] KMIEĆ A., 1980: Hydrodynamics of flows and heat transfer in spouted beds. The Chemical Engineering Journal, 19, pp. 189-200.
  • [54] KMIEĆ A., LUDWIG W, SZAFRAN R.G., 2003: Wymiana ciepła i masy w suszarce fontannowej z wirowym strumieniem bocznym. X Sympozjum Suszarnictwa, Jubileuszowe Ogólnopolskie Sympozjum z udziałem gości zagranicznych, Łódź, 17-19 września.
  • [55] KMIEĆ A., ENGLART S., LUDWIŃSKA A., 2007: Teoria i technika fluidyzacji. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • [56] KONDJOYAN A., BOISSON H.C., 1997: Comparison of calculated and experimental heat transfer coefficients at the surface of circular cylinders placed in a turbulent cross-flow of air. Journal of Food Engineering, 34, pp. 123-143.
  • [57] KULKARNI A.V, ROYEDO C.O., SINGH R.P., 2000: Air impingement thawing of foodstuff. IFT Annual Meeting.
  • [58] KUNI D., LEYENSPIEL O., 1969: Fluidization engineering, New York, Wiley.
  • [59] LANDFELD A., HOUSKA M., KYHOS K., QTBIN, J., 2002: Mass transfer experiments on vacuum cooling of pre-cooked solid foods. Journal of Food Engineering, 52, pp. 207-210.
  • [60] LEE D.H., CHUNG Y.S., KIM M.G., 1999: Technical note. Turbulent heat transfer from a convex hemispherical surface to a round impinging jet. International Journal of Heat and Mass Transfer, 42, pp. 1147-1156.
  • [61] LEE J., LEE S.-J., 1999: Stagnation region heat transfer of a turbulent asisymmetric jet impingement. Experimental HeatTransfer,12(2),pp. 137-156.
  • [62] LI A., WALKER C. E., 1996: Cake baking in conventional impingement and hybrid ovens. Journal of Food Science, 61, pp. 188-191, 197.
  • [63] LIM K.S., ZHU J.X., GRACE J.R., 1995: Hydrodynamics of gas solid fluidization. International Journal of Multiphase Flow, 21(Suppl.), pp. 141-193.
  • [64] LÓNDAHL G., 1995: Quality differences in fast freezing. International Kongres of Rcfrigeration, vol l, pp. 197-204.
  • [65] MARCROFT H.E., KARWE M.V, 1999: Flow field in a hot air jet impingement oven - part I: A single impinging jet. Journal of Food Processing Preservation, 23, pp. 217-233.
  • [66] MARTIN H., 1977: Heat and mass transfer between impinging gas jets and solid surfaces. Advanced Heat Transfer, 13(1), s. 1-60.
  • [67] MASSAH H., OSHINOWO L., 2008: Fluent incorporated, Lebanon, New Hampshire, Advanced gas-solid multiphase flow models offer significant process improvements. Journal articles by fluent software users, 112, pp. l -6.
  • [68] MAYIN M., RIOS G.M., GILBERT H., 1985: Use of time-temperature data during fluidized bed freezing to determine frozen foods properties. Journal of Food Engineering, 7, pp. 253-264.
  • [69] McDANIEL C.S., WEBB B.W, 2000: Slot jet impinging heat transfer from circular cylinders. International Journal of Heat and Mass Transfer, 43, pp. 1975-1985.
  • [70] MILLSAP S.C., MARKS B.P., 2005: Condensing-convective boundary conditions in moist air impingement ovens. Journal of Food Engineering, 70, pp. 101-108.
  • [71] MORRIS Ch.E., 2001: Cryogenic impingement boosts freezer efficiency. Food Engineering, 73(6), pp. 89-90.
  • [72] NARAYANAN V., SEYED-YAGOOBI J-, PAGE R.tL, 2004: An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. International Journal of Heat and Mass Transfer, 47, pp. 1827-1828.
  • [73] OLAZAR M., SAN JOSE M.J, AUGUAYO A.T., ARANDES M., BILBAO J., 1999: Stable operation conditions for gas-solid contact regimes in conikal spouted beds. industrial and Engineering Chemistry Research, 3, pp. 1784-1792.
  • [74] OLSSON E.E.M., AHRNE L.M., TRAGARDH A.C., 2004: Heat transfer from a slot air jet impinging on a circular cylinder. Journal of Food Engineering, 63, pp. 393-401.
  • [75] OVADIA D.Z., WALKER (CHUCK) C.E., 1998: Impingement in Food Processing. Food Technology, vol.52, no 4, pp. 46-50, April.
  • [76] PAHLSSON L, 2009: Demand for frozen food quality, variety inspires new freezer design, www.jbtfoodtech.com.
  • [77] PERSON P.O., 1967: Huidizing technique in food freezing. ASHRAE, 6, pp. 42-44.
  • [78] POLAT S., 1993: Heat and mass transfer in impingement drying. Drying Technology, 11(6), pp. 76-1147.
  • [79] POLAT S., HUANG B., MAJUMDAR A.B., DOUGLAS W.J.M., 1989: Numerical flow and heat transfer under impinging jets. A review, In C.L. Tien (Ed.), Annual review of numerical fluid mechanics and heat transfer, Hempshere Publishing Corporation: Washington, DC., 2, pp. 157-197.
  • [80] ROSIAK A., 2006: Oszranianie powierzchni obiektu zanurzonego w płytkim złożu fluidalnym (cz.I), Chłodnictwo i Klimatyzacja, 3, s. 90-93.
  • [81] SALVADORI V.O., MASCHERONI R.H., 2002: Analysis of impingement freezers performance. Journal Food Engineering, 54, pp. 133-140.
  • [82] SAN J. Y, SHIAO W.Z., 2006: Effects of jet plate size and plate spacing on the Stagnation Nusselt number for a confirmed circular air jet impinging on a flat surface. International Journal of Heat and Mass Transfer, 49, pp. 3477-3486.
  • [83] SAN JOSE M.J., OLAZAR M., AUGUAYO A.T., ARANDES J.M, BILBAO J., 1993: Expansion of spouted beds in conical contactors. The Chemical Engineering Journal, 51, pp. 45-52.
  • [84] SARKAR A., NITIN N., KARWE M. V., SINGH R.P., 2004: Fluid flow and heat transfer in air jet impingement in food processing, Journal of Food Science, 69(4), pp. 114-115.
  • [85] SARKAR A., SINGH R.P., 2004: Air impingement technology for food processing: visualization studies. Lebensmittel Wisscnschaft und Technologie, 37, pp. 873-879.
  • [86] SHI Y.L., RAY M.Ti., MUJUMDAR A.S., 2002: Computational study of impingement heat transfer under a turbulent slot jet. Industrial & Engineering Chemistry Research 41(18), pp. 4643-4651.
  • [87] SHUJA S.Z.,YILBAS B.S., BUDAIRM.O.,2005: Flow impingement onto a flat plate with limited heated area in relation to laser gas assisted processing: Influence of nozzle geometry on heat transfer rate. International Journal of Numerical Methods for Heat and Fluid Flow, 15(4), pp. 363 - 378.
  • [88] SOTO V., BÓRQUEZ R., 2001: Impingement jet freezing of biomaterials. Food Control, 12, pp. 515 - 522.
  • [89] STADNIK Ł., 2010: Kształtowanie warunków zamrażania żywności realizowanego metodą odwróconej fluidyzacji, Rozprawa doktorska, Lublin.
  • [90] SUBRAMANIAN R.S., 2009: Flow through Packed Beds and Fluidized Beds; www.web2.clarkson.edu/projects/ subramanian/ch301/notes/packfluidbed.pdf.
  • [91] TAWFEKA., 1999: Heat transfer due to a round jet impinging normal to a circular cylinder. Heat and Mass Transfer, 35, pp. 327-333.
  • [92] THIELEN L., |ONKER H.J.J., HANJALIĆ K„ 2003: Symmetry breaking of flow and heat transfer in multiple impinging jets. International Journal of Heat and Fluid Flow, 24, pp. 444-453.
  • [93] WAHLBY U, SKJÓLDEBRAND C., JUNKER E., 2000: Impact of impingement on cooking time and food quality. Journal of Food Engineering, 43, pp. 179-187.
  • [94] WANG Z., BI H.T., LIM C.J., SU P., 2004: Determination of minimum spouting velocities in conical spouted beds. The Canadian Journal of Chemical Engineering, 82, pp. 11-19.
  • [95] WANG S.J., MUJUMDAR A.S., 2005: A comparative study of five low Reynolds number k-e models for impingement heat transfer. Applied Thermal Engineering, 25, pp. 31-44.
  • [96] YAN X., BAUGHN J.W., MESBAH M., 1992: The effect of Reynolds number on the heat transfer distribution from a flat plate to an impinging jet. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, l-7,s. 226.
  • [97] ZENZ E, OTHMER D.E, 1969: Fluidization and fluid-particle systems. New York, Reinhold Publishing Corporation.
  • [98] ZHIPENG D., MUZYCZKA Y. S., 2005: Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks. 38th ALAA Thermophysics Conference, Toronto, Ontario Kanada, 6-9 June.
  • [99] ZORANA L.J. ARSENIJEVIĆ, ŹELJKO B. GRABAYĆIO, RADMILA V. GARIĆ G., 2002: Drying of solutions and suspensions in the modified spouted bed with draft tube. Original Scientific Paper UDC: 532.546:66.047.7/.8 lil-BLID: 0354-9836, 6(2), pp. 47-70.
  • [100] ZORANA L.J. ARSENIJEVIĆ, ŹELJKO B. GRABA-VĆIĆ, RADMILA V. GARIĆ G., 2006: Prediction of the particle circulation rate in a draft tube spouted bed suspension dryer. Institute for Chemistry, Technology and Metallurgy, Njegośeva, 12, 11000 Belgrade and 2 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia and Montenegro. Journal of the Serbian Chemical Society, JSCS - 3436, 71(4), pp. 401-412.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0036-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.