PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Facture energy of bonded joints with 2D elastic adhesive layer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hook elastic layer. In the case of 1D elastic layer, represented as Hooks spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint were measured, within this contribution, 2D Finite Element Method model is introduced. The FEM allows adhesive layer to be simulated as two perpendicular-acting Hook's springs, thus in-plane shear compliance is enabled. Subsequently, appropriate analysis were carried out. Results, in terms of plate deflection, were compared with laser profilometry technique and common analytical solutions. It is concluded that linear 1D model is not sufficient for the asymmetric bonded joint configuration since the adhesive resists actively also in the in-plane shearing direction. Omitting shearing compliance effect can lead to valuable misinterpretation of the fracture energy, up to 20% in cases studied, and thus, cannot be ignored. Finally, power law based, correction factors are given promising fast and reliable data correction.
Rocznik
Strony
4--16
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
autor
  • Université Bordeaux 1, Laboratoire de Mécanique Physique LMP-UMR CNRS 5469, 351 Cours de la Libération, 33405 TALENCE Cedex, France
Bibliografia
  • 1. Allen K. W.: Papyrus - some ancient problems in bonding, International Journal of Adhesion and Adhesives, 16, pp. 47-51, 1996.
  • 2. Licari J. J., Swanson D. W.: Adhesive Technology for electronic applications, William Andrew Publishing, 2005.
  • 3. Täljsten B.: The Importance of Adhesive Bonding - An historic overview and future possibilities, Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, ed. Chen and Teng, International Institute for FRP in Construction, 2005.
  • 4. Higgins A.: Adhesive bonding of aircraft structures, International Journal of Adhesion and Adhesives, 20, pp. 367-376, 2000.
  • 5. Erdman D., Battiste R., Boeman R., Klett L.: Characterization of a Structural Adhesive in Automotive Environments, Future Car Congress 2000, Engineering Technology Division, Oak Ridge National Laboratory, Society of Automotive Engineers, Inc., 2000.
  • 6. Jie K., Rongchang N., Yusheng T.: Study on modification of epoxy resins with acrylate liquid rubber containing pendant epoxy groups, Journal of Material Science Letters, 41, pp. 1639–1641, 2006.
  • 7. Rider A. N., Olsson-Jacques C. L., Arnott D. R.: Influence of Adherend Surface Preparation on Bond Durability, Surface and Interface Analysis, 27, pp. 1055–1063, 1999.
  • 8. Budzik M. K., Jumel J., Imielinska K., Shanahan M. E. R.: Accurate and continuous adhesive fracture energy determination using an instrumented wedge test, International Journal of Adhesion and Adhesives 29, pp. 694–701, 2009.
  • 9. Chen C. R., Kolednik O., Scheider I., Siegmund T., Tatschl A., Fischer F. D.: On the determination of the cohesive zone parameters for the modeling of micro-ductile crack growth in thick specimens, International Journal of Fracture, 120, pp. 517–536, 2003.
  • 10. Fernlund G.: Stress analysis of bonded lap joints using fracture mechanics and energy balance, International Journal of Adhesion and Adhesives, 27, pp. 584–592, 2007.
  • 11. Ikegami K., Fujii T., Kawagoe H., Kyogoku H., Motoie K., Nohno K., Sugibayashi T., Yoshida F.: Benchmark tests on adhesive strengths in butt, single and double lap joints and double-cantilever beams, International Journal of Adhesion and Adhesives, 16, pp. 219-226, 1996.
  • 12. Tschegg E. K., Krassnitzer T.: Mode I fracturing properties of epoxy bonding paste, International Journal of Adhesion and Adhesives, 28, pp. 340–349, 2008.
  • 13. Blackman B. R. K., Kinloch A. J., Paraschi M., Teo W.S.: Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin, International Journal of Adhesion and Adhesives, 23, pp. 293–305, 2003.
  • 14. Cotterell B., Hbaieb K., Williams J. G., Hadavinia H., Tropsa V.: The root rotation in double cantilever beam and peel tests, Mechanics of Materials, 38, pp. 571–584, 2006.
  • 15. Budzik M. K., Jumel J., Imielinska K., Shanahan M. E. R.: Effect of Adhesive Compliance in the Assessment of Soft Adhesives with the Wedge Test, Journal of Adhesion Science and Technology 0, pp. 1–19, 2010.
  • 16. Jian S., Jun S., Zengjie D., Huijue Z.: The finite element analysis of deformation and stress triaxiality of a mixed I + II mode with elasticplastic crack tip, International Journal of Fracture, 87, pp. 47–58, 1997.
  • 17. Chen B., Dillard D. A.: The effect of the T-stress on crack path selection in adhesively bonded joints, International Journal of Adhesion and Adhesives, 21, pp. 357-368, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0035-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.