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Abstract 
 

In the paper a number of various types of vessels’ power plant steam system failures have been analyzed with 
regard to the general population they come from. For the purpose of the analysis the Kruskal – Wallis rank sum test 
and Kruskal – Wallis ANOVA rank test from the statistical packet STATISTICA 8.0 have been used. The analysis was 
based on the observations of the failure of marine power plants steam systems elements. Failures to the marine power 
plant systems of 10 ships owned by the Polish Steamship Company of Szczecin was the subject of a statistical data 
analysis. All the ships differed in respect to their place and time of construction as well as their technical parameters. 
The data on marine power plants failures was collected in similar conditions, that is, they were supplied by an engine 
crew member working in the marine power plant. The data on the failures of particular marine power plant systems 
was obtained accordingly to the test schedule [N, W, T], which means that N renewable objects were the subject of the 
test within the time T. Since the recovery time of the damaged system appeared negligibly short, when compared to the 
time of the test, it was assumed that consecutive recoveries overlap the failure moments. The statistical analysis dealt 
with moments   of the particular systems’ consecutive failures and the length of time intervals nttt ≤≤≤ ...21 nτ  
between the objects’ consecutive failures. 
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1. Introduction 
 

In failure analysis of complex technical systems, especially when searching for failure 
distributions, it needs to be determined whether collected statistical data on failures come from the 
same general population. It needs to be specified, whether they may be analyzed as a set of data 
characterized by common statistical features. In the paper it has been presented on the basis of 
marine power plant steam system failures. 

The statistical analysis of the data on selected marine power plant steam system failures has 
been done for the following ships, which were assigned symbols for the ease of description: S1 – 
m/s "ZIEMIA OLSZTYŃSKA", S2 – m/s "ZIEMIA SUWALSKA", S3 – m/s "HUTA ZGODA", 
S4 – m/s "GENERAŁ BEM", S5 – m/s "SOLIDARNOŚĆ", S6 – m/s "ZAGŁĘBIE 
MIEDZIOWE", S7 – m/s "KOPALNIA RYDUŁTOWY", S8 – m/s "OBROŃCY POCZTY", S9 – 
m/s "MACIEJ RATAJ", S10 – m/s "UNIWERSYTET GDAŃSKI". 

The data on power plant failures was collected in similar conditions, that is, supplied by an 
engine crew member working in the power plant [5, 6]. 
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All the ships differ in respect to their place and time of construction as well as their technical 
parameters. 

Information on failures was collected during an average voyage lasting for up to six months. 
For the statistical analysis the time accepted is 180 days, with one day as the time unit defining the 
moments of failures. 

The data on failures deals with six systems: lubricating system – IOS, sea water cooling system 
– IWM, fresh water cooling system – IWS, fuel system – IPal, compressed air system – ISP and 
steam system – IPar. 

The procedure of the statistical analysis refers to individual power plant systems as research 
objects in spite of the fact that each of them is actually a system combined of many components of 
complex reliability structure. Causes of the individual system failures were not the subject of 
consideration. For reliability analysis of complex technical systems, which undoubtedly power 
plant systems belong to, a number of various methods of the system reliability assessment have 
been applied, e.g. network [1, 3, 4], various logarithms [2, 7] or a combination of other methods 
[8, 9, 10]. 
 
2. Data on failures 
 

Data on failures of the individual power plant systems was obtained in compliance with the 
research schedule [N, W, T], which means that N renewable objects were the subject of the 
research during the time T. Since the time of renewal of the damaged systems turned out 
negligibly short, when compared to the time of research, an assumption was made that the 
consecutive moments of renewal overlap with the moments of failures. 

Moments of the consecutive failures  and the lengths of time between 
consecutive failures 

nttt ≤≤≤ ...21

τ n  of the objects in question became the subject of the statistical analysis. 
The following assumptions were made: 

1) for vessels S1 – S5 the time is measured from the moment of the first failure repair, 
2) for vessels S6 – S10 the lengths of time period τ n  between the consecutive failures do not 

include the time between the beginning of the voyage and the first failure, 
3) time period between the last failure and the end of the observation after 180 days have been 

taken into consideration. 
Table 1 shows cumulative number of failures of individual systems on all ships. The next 

tables contain failure moments and lengths of time between consecutive failures of individual 
systems for all ten ships. 
 

Table 1. Cumulative number of failures of individual power plant systems on all surveyed ships 
 

Name of the system Cumulative number of failures  
 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Sum 

Lubricating system – IOS 3 1 5 6 2 3 21 8 8 9 66 
Sea water system – IWM 7 3 4 4 2 11 5 8 8 5 57 
Fresh water system – IWS 6 2 6 3 2 7 8 9 5 7 55 

Fuel system – IPal 8 12 5 12 6 19 23 17 7 12 121 
Compressed air system – ISP 2 1 2 2 2 5 5 8 3 6 36 

Steam system– IPar 4 6 3 2 3 10 4 9 3 6 50 
Total 30 25 25 29 17 55 66 59 34 45 385 

 
In tables 2 and 3 data on failure of the steam system – IPar, the subject of the analysis, has been 

presented. 
 

 

 



Table 2. Consecutive failure moments of the steam system – IPar 
 

Number Moments of consecutive failures (days) 
of failure S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 19 8 76 53 11 3 14 10 37 8 
2 52 19 114 110 27 13 27 17 109 34 
3 99 25 161  100 21 71 28 149 66 
4 123 50    47 91 37  80 
5  89    51  45  106 
6  93    65  72  122 
7      89  111   
8      92  119   
9      119  128   

10      155     
 

Table 3. Time between consecutive failures of the steam system – IPar 
 

 Time between consecutive failures (days) 
L.p. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 19 8 76 53 11 10 13 7 72 25 
2 33 11 38 57 16 8 44 11 40 33 
3 47 6 47 70 73 26 20 9 31 14 
4 24 25 19  80 4 89 8  25 
5 57 39    14  27  16 
6  4    24  39  58 
7  87    3  8   
8      27  9   
9      36  52   

10      25     
 

 
3. Assessment of whether steam system failure moments and periods of time between failures 
come from the same population 
 

Data on marine steam system failures come from different ships of various technical 
parameters [5, 6]. Thus, it is necessary to verify the hypothesis stating that they come from one 
population, in other words, that they may be treated as a realization of the same random sample. 
Only such verification allows for determining general reliability characteristics of particular 
systems due to the collected statistical data. 

The hypothesis was verified by the Kruskal – Wallis rank sum test. 
In the test it is assumed that there are k general populations of data with optional distributions 

and continuous distribution functions F1(x), F2(x),..., Fk(x). Out of each population ni (i=1,2,...,k) 
random sample elements were independently drawn. Since steam system failure data is not 
numerous, it is essential that the test does not require any specific sample size. 

The verification of the hypothesis Ho:  F1(x) = F2(x) =...= Fk(x) is presented below. 
For that purpose all sample values are arranged in ascending order and assigned ranks. In case 

of a repeated value the ranks are assigned by averaging their rank positions they would be given if 
they were not identical. Next the rank sum Ti (i=1,2,...,k) of each sample is calculated separately. 
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assuming that the hypothesis H0 is true, has asymptotic distribution χ2 with k-1 degree of freedom. 

 



The critical region in the test is built on the right side, which means that the hypothesis Ho is 
rejected when the statistic value , where  is the quantile of the distribution  of k-1 
degrees of freedom and accepted significance level α. 

2
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1 αχ −
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Making a decision about rejection of H0 hypothesis or lack of bases for its rejection is also 
facilitated with knowledge about the test significance level α̂  for the statistic value Hn,, obtained 
from: 
                       (2) ( ) αχα ˆ2

ˆ =≥ nHP
If αα ˆ> , the hypothesis H0 is rejected, otherwise there is no basis for its rejection. 

The test was performed for both tn moments of consecutive failures and τn periods of time 
between consecutive failures of a given system. 

In all tests the accepted significance level was α=0,05. 
When verifying the hypothesis H0:  F1(x) = F2(x) =... = F10(x) stating that the consecutive 

failure moments’ tn distribution of all ships steam systems (IPar) was identical, the data in table 2 

was assigned ranks and in table 4 the rank sum Ti and the summands 
i

i

n
T 2

 of the sum from formula 

(1) separately for each of the vessels were calculated. 
 

Table 4. Computation of ranks of the steam system (IPar) consecutive failure moments 
 

Number 
of failure 

Ranks of consecutive failure moments of steam system – IPar 
 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
1 9,5 2,5 29 24 5 1 7 4 17,5 2,5 
2 23 9,5 42 40 13,5 6 13,5 8 39 16 
3 36 12 50  37 11 27 15 48 26 
4 46 21    20 33 17,5  30 
5  31,5    22  19  38 
6  35    25  28  45 
7      31,5  41   
8      34  43,5   
9      43,5  47   

10      49     
Rank 
sum 
Ti 

 
114,5 

 
111,5 

 
121,0 

 
64,0 

 
55,5 

 
243,0 

 
80,5 

 
223,0 

 
104,5 

 
157,5 

Ti
2 13110,3 12432,3 14641,0 4096,0 3080,25 59049,0 6480,25 49729,0 10920,3 24806,3

T
n

i

i

2
 

 
3277,57 

 
2072,05 

 
4880,33 

 
2048,0

 
1026,75

 
5904,9

 
1620,06

 
5525,44 

 
3640,1 

 
4134,38

 
Due to so . 

Thus the statistical value 
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=H . Comparing the statistical value 

 H=7,6099 with the quantile value of the distribution 2χ  of k-1=9 degrees of freedom
162

95,0 =χ ), it is to be concluded that reasons for rejecting the hypothesis H0 do not 
exist; the significance level 

 
 (H<9258, 2

95,0χ
α̂ =0,5739. 

Further on the subject of verification was the hypothesis H0:  G1(x) = G2(x) =... = G10(x) that 
distribution of time τn, between consecutive failures of steam system (IPar) on all ships is identical. 

 



Data in table 3 was assigned ranks and in table 5 the rank sum Ti and the summands 
i

i

n
T 2

 of the 

sum from formula (1) separately for each of the vessels were calculated. 
 

Table 5. Computation of ranks of the periods of time between failures of steam system (IPar) 
 

 Ranks of the periods of time between failures of steam system – IPar 
 

No S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
1 21,5 7,5 52 45 14 12 16 5 50 27,5 
2 34,5 14 37 46,5 19,5 7,5 41 14 40 34,5 
3 42,5 4 42,5 49 51 30 23 10,5 33 17,5 
4 24,5 27,5 21,5  53 2,5 55 7,5  27,5 
5 46,5 38,5    17,5  31,5  19,5 
6  2,5    24,5  38,5  48 
7  54    1  7,5   
8      31,5  10,5   
9      36  44   

10      27,5     
Rank 

sum Ti 
 

169,5 
 

148,0 
 

153,0 
 

140,5 
 

137,5 
 

190,0 
 

135,0 
 

169,0 
 

123,0 
 

174,5 

Ti
2 28730,3 21904,0 23409,0 19740,3 18906,3 36100,0 18225,0 28561,0 15129,0 30450,3

T
n

i

i

2
 

 
5746,06 

 
3129,14 

 
5852,25 

 
6580,1

 
4726,57

 
3610,0 

 
4556,25

 
3173,44

 
5043,0 

 
5075,05

 

Due to  so . 

Thus, the statistical value 
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=H . Comparing the statistical value 

H=17,0334 with the quantile value of the distribution  of k-1=9 degrees of freedom 
(H> ), the hypothesis H0 needs to be rejected; the significance level 

2χ
9258,162

95,0 =χ 2
95,0χ α̂ =0,0482. 

So, data about periods of time between failures is steam system of the vessels do not belong to the 
same general population. 

The analysis of the failure data from table 1 leads to the conclusion that the steam system 
(IPar) failure frequency on ships S6 and S8 turns out significantly higher than on the other vessels. 
Thus, an assumption is to be made that the data should be divided into two groups of high and low 
failure frequency. 

Further on the subject of verification was the hypothesis H0: 
G1(x)=G2(x)=G3(x)=G4(x)=G5(x)=G7(x)=G9(x)=G10(x) that τn, distribution of time between 
consecutive failures of steam system (IPar) on all ships S1, S2, S3, S4, S5, S7, S9 and S10 is 
identical. 

Data in table 3 was assigned ranks and in table 6 the rank sum Ti and the summands 
i

i

n
T 2

of the 

sum from formula (1) separately for each of the vessels were calculated. 
 

 
 
 
 
 

 



Table 6. Computation of ranks of the periods of time between failures of steam system (IPar) 
 

 Ranks of the periods of time between consecutive failures of steam system – IPar 
 

No.  S1  S2 S3  S4 S5 S7  S9  S10 
1 10,5 3 33 26 4,5 6 31 15 
2 18,5 4,5 20 27,5 8,5 23 22 18,5 
3 24,5 2 24,5 30 32 12 17 7 
4 13 15 10,5  34 36  15 
5 27,5 21      8,5 
6  1      29 
7  35       
Ti 94,0 81,5 88,0 83,5 79,0 77,0 70,0 93,0 
Ti

2 8836,0 6642,25 7744,0 6972,25 6241,0 5929,0 4900,0 8649,0 
Ti

2/ni 1767,2 948,89 1936,0 2324,08 1560,25 1482,25 1633,33 1441,5 
 

Due to . 

Thus, the statistical value

,6,3,9,4,10,4,3,4,7,5 10987654321 ========== nnnnnnnnnn 36
10

1
86 =∑ −−=

=k
k nnnn

9595,63735,13093
3736

12 =⋅−⋅
⋅

=H . Comparing the statistical value 

H=6,9595 with the quntile value of the distribution  of k-1=7 degrees of freedom  
(H< ), it is to be concluded that reasons for rejecting the hypothesis H0 do not exist; the 
significance level 

2χ 0738,142
95,0 =χ

2
95,0χ

α̂ =0,4331. 
Further on the subject of verification was the hypothesis H0: G6(x)  = G8(x), that distribution of 

time between consecutive failures (τn) of steam system (IPar) on ships S6 and S8 was identical. 
Data on periods of time between failures of steam system on ships S6 and S8 was assigned 

ranks and in table 7 the rank sum Ti and the summands 
i

i

n
T 2

of the sum from formula (1) separately 

for each of the vessels were calculated. 
 

Table 7. Computation of ranks of the periods of time between consecutive failures of steam system (IPar) 
 

 
No 

Ranks of the periods of time between consecutive IPar 
failures of steam system – Ipar 

 S6 S8 
1 9 3 
2 5 10 
3 14 7,5 
4 2 5 
5 11 15,5 
6 12 18 
7 1 5 
8 15,5 7,5 
9 17 19 

10 13  
Ti 99,5 90,5 
Ti

2 9900,25 8190,25 
Ti

2/ni 990,03 910,03 
 

Because  , so the statistical value ,9,10 86 == nn 1986 =+= nnn

0019,020306 =⋅−,1900
2019

12 ⋅
⋅

=H . Comparing the statistical value H=0,0019 with the quantile 

 



value of the distribution  of k-1=1 degrees of freedom  (H< ), it is to be 
concluded that reasons for rejecting the hypothesis H0 do not exist; the significance level 

2χ 842,32
95,0 =χ 2

95,0χ
α̂

,9652. =0
Therefore of the above presented the Kruskal – Wallis tests point out that for steam system 

(IPar) consecutive moments of failures on all 10 ships can be treated as a sample coming from the 
same general population with periods of time between failures which need to be divided into two 
groups: the first one including ships S1, S2, S3, S$, S5, S7, S9, S10 of low frequency failure and 
the second one comprising S6 and S8, ships of steam system high frequency failures. 

Next stage of the work was a similar test performed by computer packet STATISTICA 8.0. 
Available tests to be performed for n independent samples are ANOVA rank Kruskal – Wallis 

and median test from the packet STATISTICA 8.0. 
The Kruskal – Wallis test is a nonparametric equivalent to one – factor variance analysis. Due 

to the test it was estimated whether n independent sample data come from the same population or 
from the population of the same median. Individual samples do not need to have identical sample 
sizes. Median test appears a less accurate version of ANOVA Kruskal – Wallis test, that is, the 
survey statistic is not built on the basis of raw data or ranks. 

In order to analyze marine power plant steam systems there are no bases for rejection of null 
hypothesis concerning the distribution of consecutive failure moments tn coming from one general 
population at the accepted significance level α=0,05, which is confirmed by the results of ANOVA 
Kruskal – Wallis test shown in fig. 1. Box plots for all distributions have been presented in fig.2. 
 

The Kruskal-Wallis test: H(9, N=50) = 7,611853; p = 0,5737

Marking of the
steam system

N - number of all
observations

Rank
sum

1 4 114,5000
2 6 111,5000
3 3 121,0000
4 2 64,0000
5 3 55,5000
6 10 243,0000
7 4 80,5000
8 9 223,0000
9 3 104,5000

10 6 157,5000
Fig. 1. Results of Kruskal – Wallis test for the consecutive failure moments tn of the steam system presented in 
STATISTICA 8.0 table; N – number of all observations, 9 – number of degrees of freedom of distribution χ2 of 

statistic H, H – value of Kruskal – Wallis statistic, p – value 
 

In case of distributions of periods of time tn between consecutive failures of marine steam 
system, probability level obtained in the ANOVA Kruskal-Wallis test approximates to 0,05 and 
equals p=0,0479 (fig. 3). However, from the formal point of view, the null hypothesis that 
distributions of periods of time tn between consecutive failures come from one general population 
on the assumed significance level α=0,05 should be rejected. Therefore, additional median test 
(fig. 4) accessible in the window Nonparametric statistics>comparison of a number of 
independent samples (groups) from STATISTICA 8.0 was performed. The median test [13, 14] is 
the less accurate version of ANOVA Kruskal-Wallis test, that is, the test statistic is not built on the 
basis of raw data or their ranks – the presented calculations are based on contingency table. 

In particular, in each of the samples the STATISTICA program computes the number of cases 
above or below the common median and calculates chi-square statistic value for contingency table 

 



results 2 × n samples. According to the null hypothesis (that all samples come from a population 
with identical medians) it is to be expected that approximately 50% of all cases occur above or 
(below) the common median. The test appears especially useful in cases where the measuring scale 
includes artificial limits and a number of cases occur at the scale end. In such a situation the 
median test turns out to be the only method to be applied for comparing samples. 
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Fig. 2. Box plots for distribution moments tn of steam system consecutive failures developed due to STATISTICA 8.0 

 

 



The Kruskal-Wallis test: H(9, N=55) = 17,05462; p = 0,0479

Marking of the
steam system

N - number of all
observations

Rank
sum

1 5 169,5000
2 7 148,0000
3 4 153,0000
4 3 140,5000
5 4 137,5000
6 10 190,0000
7 4 135,0000
8 9 169,0000
9 3 123,0000

10 6 174,5000
 

Fig.3. Results of the Kruskal – Wallis test for distributions of periods of time τn between consecutive steam system 
failures presented in STATISTICA 8.0 tables; N – number of all observations, 9 – number of  degrees of freedom of 

asymptotic distribution χ2 of statistic H, H – statistic value of Kruskal – Wallis test, p – value 
 
 
 
 

 

Median test, general median = 25,0000;
Independent (grouping) variable: marking of the steam system
Chi square = 11,62333; df = 9; p = 0,2354

1 2 3 4 5 6 7 8 9 10 Total
<=medians:observed

expected
observed-expecte

>medians:observed
expected

observed-expecte
Total: observed

2,000000 5,00000 1,00000 0,00000 2,000000 7,00000 2,000000 6,00000 0,00000 4,00000029,00000
2,636364 3,69091 2,10909 1,58182 2,10909 5,27273 2,10909 4,74545 1,58182 3,163636

-0,636364 1,30909 -1,10909-1,58182-0,10909 1,72727-0,10909 1,25455-1,58182 0,836364
3,000000 2,00000 3,00000 3,00000 2,000000 3,00000 2,000000 3,00000 3,00000 2,00000026,00000
2,363636 3,30909 1,89091 1,41818 1,890909 4,72727 1,890909 4,25455 1,41818 2,836364
0,636364-1,30909 1,10909 1,58182 0,10909 -1,72727 0,10909 -1,25455 1,58182-0,836364
5,000000 7,00000 4,00000 3,00000 4,00000010,00000 4,000000 9,00000 3,00000 6,00000055,00000

Fig.4. Results of median test for the distributions of periods of time τn between failures of steam system presented in 
STATISTICA 8.0 table 

 
On the basis of the median test there are no bases for rejection of the null hypothesis with the 

distributions of periods of time τn between consecutive failures coming from one general 
population (probability level p=0,2354) with the accepted significance level α=0,05. For that 
purpose additional multiple (double – sided) comparisons of all sample ranks were performed. The 
probability values post - hoc obtained by means of multiple comparisons and rated values „z” do 
not prove significant statistical differences among particular pairs of distributions (fig. 5 and 6). 

 

 



p-value for multiple (double-sided) comparisons;
Independent (grouping) variable: marking of the steam system
The Kruskal-Wallis test: H(9, N= 55) = 17,05462; p = 0,0479

1
R:33,900

2
R:21,143

3
R:38,250

4
R:46,833

5
R:34,375

6
R:19,000

7
R:33,750

8
R:18,778

9
R:41,000

10
R:29,083

1
2
3
4
5
6
7
8
9
10

1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 0,906151 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 0,906151 1,000000 1,000000 0,373978 1,000000 0,387875 1,000000 1,000000
1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 1,000000 0,373978 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 1,000000 0,387875 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000

Fig. 5. View of the table of post – hoc probability values for the comparison of pairs of distributions for periods of 
time τn between consecutive steam system failures and mean ranks value of R distributions for calculations performed 

in STATISTICA 8.0 program 
 

Value 'z' for multiple comparisons;
Independent (grouping) variable: marking of the steam system
The Kruskal-Wallis test: H(9, N= 55) = 17,05462; p = 0,0479

1
R:33,900

2
R:21,143

3
R:38,250

4
R:46,833

5
R:34,375

6
R:19,000

7
R:33,750

8
R:18,778

9
R:41,000

10
R:29,083

1
2
3
4
5
6
7
8
9
10

1,359916 0,404761 1,105418 0,044198 1,698013 0,013957 1,692283 0,606840 0,496508
1,359916 1,703631 2,323791 1,317735 0,271414 1,255494 0,292935 1,796146 0,890871
0,404761 1,703631 0,701476 0,342060 2,031010 0,397231 2,022602 0,224745 0,886405
1,105418 2,323791 0,701476 1,018162 2,639183 1,069240 2,626790 0,445941 1,566854
0,044198 1,317735 0,342060 1,018162 1,622170 0,055171 1,620101 0,541431 0,511698
1,698013 0,271414 2,031010 2,639183 1,622170 1,556228 0,030189 2,086060 1,218807
0,013957 1,255494 0,397231 1,069240 0,055171 1,556228 1,555182 0,592509 0,451261
1,692283 0,292935 2,022602 2,626790 1,620101 0,030189 1,555182 2,080626 1,220500
0,606840 1,796146 0,224745 0,445941 0,541431 2,086060 0,592509 2,080626 1,051926
0,496508 0,890871 0,886405 1,566854 0,511698 1,218807 0,451261 1,220500 1,051926

Fig. 6. View of the table of normal values „z” for comparison of pairs of distributions of periods of time τn between 
consecutive failures of steam system and the value of mean ranks of R distributions for calculations performed in 

STATISTICA 8.0 program 
Box plots of all distributions were presented in fig. 7. The obtained results of nonparametric 

tests do not explicitly verify the null hypothesis that distributions of periods of time τn between 
consecutive failures come from one general population at the assumed significance level α=0,05. 
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Fig. 7. Box plots of distributions of periods of time τn between consecutive steam system failures developed by means 
of STATISTICA 8.0 

 
The performed multiple comparisons (fig. 5 and 6) do not show which distributions differ 

statistically from others. Because ANOVA rank Kruskal – Wallis test can be performed by means 
of STATISTICA 8.0 program relatively quickly, it was performed several times for distributions of 
periods of time τn between consecutive failures without data from one or two marine steam 
systems considered. The distributions were selected according to sample sizes, that is, the biggest 
and smallest sizes, e.g. S4, S3, S9, S6, S8, S4 and S3, S4 and S9, S6 and S8 were considered. Each 
time the test results did not provide bases for rejection of the null hypothesis that the distributions 
came from one general population. Thus, it is to be assumed that the null hypothesis stating that all 
10 considered distributions of periods of time τn between consecutive steam system failures come 
from one population, is true and the outcome of ANOVA Kruskal – Wallis test (p=0,0479) is the 
result of too short period of steam system observation. 

The disadvantage of nonparametric tests is their smaller potential in reference to parametric 
tests. The nonparametric test power can be enhanced due to the increase of sample sizes of the 
considered random variables. 

4. Conclusion 
Nowadays consecutive stages of statistical inference aided by statistical computing software 

packages got fairly shortened. Classic stages of statistical inference (with no statistical computing 
packages) used to run in the following way [13, 14]: 
1. data input; 
2. formulation of null hypothesis; 
3. checkup of the selected test assumptions; 
4. calculation of the test value on the basis of the sample results; 
5. finding critical values in statistical tables at the fixed significance level; 
6. making decision about rejection or acceptance of the null hypothesis at the fixed significance 

level; 
7. interpretation of the obtained results; 

 



 

The software package application allows for omitting computing stages 4 and 5, yet, it does not 
perform the job for a researcher at the other statistical interference stages [11, 12]. 

While verifying hypotheses by means of statistical packages, the notion of probability level p 
occurs. It is the lowest significance level, often referred to as p – value [13, 14], computed in the 
computer packages, at which the calculated value of test statistic leads to the rejection of null 
hypothesis. Following the formulation of the null hypothesis and acceptance of the significance 
level α, the test is performed and its outcome is the test spreadsheet with the computed probability 
level p. If p<α, at a given significance level a, the null hypothesis is rejected, but when p>α, on a 
given significance level, there is no basis for rejection of the null hypothesis. Actually, the value of 
α is not usually given, whereas p provides the information on hypothesis verification results [13]. 

Nonparametric tests are used in cases where the assumptions for parametric tests [13] are not 
met, e.g. in case of measurable random variables, normal distribution or equal variance of random 
variables etc. They are also applied in cases of quality data or when they can be ordered only 
according to specified criteria and in cases of small size groups. 
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