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       Abstract 
 
A prediction model of the ship propulsion risk is presented, i.e. a risk of the consequences of loss of the ship 
propulsion capability. This is an expert model based on opinions elicited by the ship power plant operators. The risk 
level depends, among other things, on the reliability state of the ship propulsion system components. This state is 
defined by operators in a linguistic form. The formal risk model parameters are determined by means of a neural 
network. The model may be useful in the ship operation decision processes.  
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1. INTRODUCTION  
 
 The risk prediction model consists of a dangerous event (DE) module and the event 
consequence module. The DE connects the two modules - it initiates consequences of particular 
causes. In the case of propulsion risk (PR), the event DE is immediate loss of the propulsion 
capability by the ship, i.e. an immediate catastrophic failure (ICF) of its propulsion system (PS). 
The event may be caused by the PS element failures or operator errors.   
 It is assumed that the model parameter identification will be based on opinions of the ship 
power plant operators, hereinafter referred to as experts. The opinions will be formulated mainly in 
a linguistic form, supported to a minimum extent by numerical data. 
 The ship PS is well developed. In the example of a simple PS presented below, it consists of 11 
subsystems (SS) and these of 92 sets of devices (SD) including several hundred devices (D) 
altogether. The PS sizes, the expert ability to express the opinions necessary to construct a PR 
model and the limited number of experts that the authors managed to involve in the study 
influenced the model form.   
 The problem of PR modeling and expert investigation methods used in this case were presented 
in publications [1,2,3,4,5,11]. 
 
2. PROPULSION RISK PREDICTION MODEL  
 
 The PR model form is determined by data that can be obtained from experts. It is assumed that 
they elicit: 
- Annual numbers N of the system ICF type failures; 
- System operating time share in the calendar time of the system observation by the expert t(a)%. 



- Linguistic estimation of the share of number of PS fault tree (FT) cuts in the failure number N 
during a year. 
- Linguistic estimation of chances or chance preferences of the occurrence of system ICF specific 
consequences, on the condition that the event itself occurs.  
Those opinions are a basis for the construction of a system risk prediction model. The linguistic 
opinions are processed by means of pare comparison methods to obtain the numerical values of 
appropriate variables [6,11]. 
 The following assumptions are made regarding the system risk model: 
- The system may be only in the active use or stand-by use state. The system ICF type events may 
occur only in the active use state.  
- The formal model of a PS ICF event stream is the Homogeneous Poisson Process (HPP). It is 
a renewal process model with negligible renewal duration time. This assumption is justified by the 
expert opinions, which indicate that catastrophic failures of some systems may occur quite 
frequently, even several times a year, but in general they cause only a relatively short break in 
normal system operation. Serious consequences with longer breaks in the system operation are less 
frequent. Also the exponential time between failures distribution, as in the case of HPP, is 
characteristic of the operation of many system classes, including the ship devices [10,13]. It is 
appropriate when defects of the modeled object and the operator errors are fully random, abrupt 
and no gradual, without wear and/or ageing-type defects. This corresponds with the situation 
where inspection and renewals are regularly carried out and prevent that type of defects.  
- The HPP parameter is determined in a neural network from data elicited by experts. The network 
can be calibrated with real data obtained from the system (or a similar systems) operation.  
- The operators can perform estimation of the PS components (devices (Ds)) reliability state and 
updating PR during ship operation, i.e. of the system ICF specific consequences, based on 
subjective estimations of the analysed system component condition.   
 For given ICF event a fault tree (FT) is constructed to determine the set of PS ICF type causes, 
where the top event is an ICF type PS failure and the basic events are the system minimum cut or 
cut failures. The notion of minimum cut is generally known. Cut is defined as a set of elements 
(devices) fulfilling a specific function which loss of that function results in a system ICF. In the 
case of minimum cut, failures of the same system elements may appear in more than one minimum 
cuts. Therefore, they are not disjoint events in the probabilistic sense. Besides, obtaining reliable 
expert opinions on the minimum cut failures is almost unrealistic. Also in the case of a PS 
ICFevent cause decomposition to the minimum cut level the number of basic events in the FT 
increases considerably. - the cause decomposition is deeper. The more basic events it contains, the 
more data are needed to tune the neural network in a situation when the number of competent 
experts available is generally very limited. In the case of cuts (not minimum cuts), they can be 
arranged to form a complete set of events. Such events are serious failures in the ship operation 
process, very well remembered by the experts. Besides, there are generally fewer cuts than 
minimum cuts in the FTs.   
 Cuts have defined reliability structures (RS). If those structures and the number of cut failures 
within a given time interval are known, then the number of failures of particular devices in the cuts 
can be determined.  
 The scheme of a model in Fig. 1 illustrates the PR prediction within a period of time t(p). The 
system operator inputs estimated reliability states of the cut elements. The elements are devices 
(D) of the all system cuts. The estimates are made by choosing the value of the linguistic variable 
LV = average annual number of ICF events from the set {minimum, 
 very small, small, medium, large, very large, critical} for the individual Ds. The operator may be 
supported in that process by a database.   
 



 Having the reliability states of the FT cut components Ds and the cut RS structures, average 
numbers Nik of these cut ICF failures are determined by “operator algorithm”. The appropriate 
methods are presented in section 3 of this article. They are input to the neural network. 
 

     
 
 The neural network, performing generalized regression, determines the system ICF type failure 
annual number N in the numerical values. The network determines the respective value of an LV 
variable singleton membership function. Seven values of the LV were adopted. The network may 
be more or less complex depending on the number of cuts and the FT structure.  
 The neural network is built for a specific PS, according to its properties and size. Each cut at 
the FT lowest level implies an entry to the network. The network error decreases with the 
increasing amount of teaching data. We are interested in the number of teaching data which 
protects the error of calculus fulfilling some statistical standards. That depends on the number and 
appropriate choice of experts.  
 If there is disproportion between the number of entries to the neural network and the it’s 
teaching data lot size, then the network may be divided to smaller parts and a complex network 
may be built. In the example here below, the catastrophic failure (CF) connected with PS 
subsystems (SS) and CF connected with sets of devices (SD) are stood out. The sets of SSs CFs 
and SDs CFs form the complete sets of failures. The occurrence any of such CF leads to the ICF 
failure of the PS. 
 Inputs to the model are risk prediction calendar time t(p) [year], the modeled PS active use time 
coefficient τ(a) and the conditional probability of the ICF event consequences. The prediction time 
is chosen as needed, in connection with the planned sea voyages.   
 
 
 



 The PS active use time coe iciff ent:  ߬(௔) = (௔)ݐ) 100)⁄  (1)                                (௣)ݐ
 

 
where t(a) % = propulsion system active use time as a share of prediction calendar time t(p) (approximately equal to the 
share of ship at sea time). 
 
 The value of τ(a) coefficient is determined by operator from the earlier or own estimates. 
The probability of the system ICF event occurrence within the prediction time t(p) is determined by 
a size K vector: 
 

         (2) 
 

where   ߣ(௔) =  intensity function (rate of occurrence of failures, ROCOF) related to the = [year/1]  ݐ ߬/ܰ
active use time, where N = number of the system ICFs within t = 1 year of observation, with the active use 
time coefficient τ determined by neural network; k = number of ICFs. 
 
 Vector (2) expresses the probability of occurrence of k = 1,2,…,K system ICFs within the 
prediction time t(p) interval. 
 Probability of occurrence of specific consequences on the condition of the analysed system ICF 
occurrence: 
 
      P{C/ICF}     (3)   
where C = C1 ∩ C2 = very serious casualty C1 or serious casualty C2 [8]. 
 
 This probability value is input by the operator from earlier data obtained from expert 
investigations for a specific ship type, shipping line, ICF type and ship sailing region. The values 
may be introduced to the prediction program database.  
 The consequences C are so serious, that they may occur only once within the prediction time 
t(p), after any of the K analysed system ICFs. The risk of consequence occurrence after each ICF 
event is determined by vector whose elements for successive k-th ICFs are sums of probabilities of 
the products of preceding ICF events, non-occurrence of consequences C of those events and 
occurrence of the cons re:equences of k-th failu   

   ব൛࡯, ൟ࢖࢚ = ∑ {ࡲ࡯ࡵ/࡯}ࡼ ૚) {࢑ࡲ࡯ࡵ}ࡼ − ࢑ୀ૚ࡷ࢑ି૚({ࡲ࡯ࡵ/࡯}ࡼ      (4) 
 
 
  3. OPERATOR’S ALGORITHM 
 
3.1. CUT MODELS 
 
 The algorithm allows processing of the subjective estimates of numbers of device D failures, 
creating FT cuts, into numerical values of the numbers of failures of those cuts. They are the 
neural network input data. The data are input to the model during the system operation, when 
devices change their reliability state. Additionally, the algorithm is meant to aid the operator in 
estimating the system reliability condition.  
 The numerical values of the numbers of failures in cuts are determined by computer program 
from the subjective linguistic estimates of the numbers of failures of component devices. The 
estimates are made by the system operators and based on their current knowledge of the device 
conditions. This is simple when cut is a single-element system, but may be difficult with the 
complex RS cuts. The algorithm aids the operator in the estimates. Specifically, it allows 
converting the linguistic values of D device CF events into corresponding numerical values of the 



cuts. The data that may be used in this case are connected with cuts - the universe of discourse 
(UD) of linguistic variables LV of the cut numbers of failures for defined RSs. These numbers are 
determined from the expert investigations.  
 Cuts are sets of devices with specific RS - systems in the reliability sense. They may be single- 
or multi-element systems. They are distinguished in the model because they can cause subsystem 
CFs and in consequence a PS ICF failure. Annual numbers of the cut element (device) CFs change 
during the operation process due to time, external factors and the operational use.   
 The conversion problem is presented for the case when in the FT cuts of subsystems (CSS) are 
distinguished and in them cuts of sets of devices (CSD). The following CSD notation is adopted: 
 

   ,,          (5) 
 
where CSDik = k-th cut of i-th subsystem, k =1.2,…,K,  i = 1,2,…,I;  eikl = l-th element of k-th CSD, l = 1,2,…, L. 
 
 The CSD cut renewal process parameters, i.e. intensity functions λ (ROCOF), are determined 
from the expert investigations of the PS system. In this case, they are applied only to the ICFs 
causing the loss of CSD function. Annual numbers of failures N, whose functions are intensity 
functions λ, are determined. It may be assumed that the numbers elicited by experts are average 
values in their space of professional experience gained during multi-year seamanship. Then the 
asymptotic intensity function takes the form [9]:    
 
(ࢇ)ࣅ       ≅  (6)                                                                  (࢚ ࣎)/ࡺ
 
where N = average number of the analysed system failures during the observation time t; τ = active use time 
coefficient; t = 1 year = calendar time that the estimate of the number of failures is related to.  
 
 We are interested in the dependence on the number of CSD cut ICFs to the number of such 
failures of the cut elements. It is determined from the formulas of the relation of systems, of 
specific reliability structures, failure rate to the failure rates of their components. It should be 
remembered that in the case of a HPP the times between failures have exponential distributions, 
whose parameter is the modeled object failure rate, in the analysed case equals to the process 
renewal intensity function λ. The formulas for the ship system CSD cut reliability structures are 
given below.  
 In the case of a single-element structure, the annual numbers of the cut failures and device 
failures are identical. 
                                                     ௜ܰ௞ = ௜ܰ௞௟, ݅ ∈ {1,2, … , ,{ܫ ݇ ∈ {1,2, … , ,{ܭ ݈ = 1,                                   (7) 
 
where Nik = annual number of failures of k-th cut in i-th  subsystem; Nikl = annual number of failures of l-th device. 
 
 In a series RS, the number of system failures is a sum of the numbers of failures of its 
components.  
                                                       ௜ܰ௞ = ௜ܰ௞ଵ + ௜ܰ௞ଶ + ⋯ + ௜ܰ௞௟ + ⋯ + ௜ܰ௞௅ .                                      (8) 
 
 A decisive role in that structure plays a "weak link", i.e. the device with the greatest annual 
number of failures. The CSD cut number of failures must then be greater than the weak link 
number of failures.   
 In a two-element parallel RS, we obtain from the average time between failures formula (8):  
࢑ࡵࡺ                                                                             = ࢑૚૛࢏ࡺ ࢑૚૛࢏ࡺ૚࢑૛ାࡺ ࢑૚࢏ࡺ࢑૛૛࢏ࡺ ࢑૚࢏ࡺ࢑૛ା࢏ࡺ  ૚࢑૛૛ࡺ   .              (9) 



 If one element in that structure fails then it becomes a single element structure. Similar 
expressions can be easily derived for a three-element parallel structure.  
 In the structures with stand-by reserve, only part of the system elements are actively used, the 
other part is a reserve used when needed. The reserve is switched on by trigger or by the operator 
action. The trigger and the system functional part create the series reliability structure. When the 
trigger failure rate is treated as constant and only one of the two elements is actively used (L = 2), 
then: 
࢑࢏ࡺ                                                                                = ࢖ ࢑࢏ࡺ +  ࢑૚     ,   (10)࢏ࡺ࢑૛ା࢏ࡺ࢑૛࢏ࡺ ࢑૚࢏ࡺ

 
where  ௜ܰ௞ ௣  = annual number of trigger failures 
 
 In the case of a three-element structure (L = 3) with two stand-by elements, we obtain: 
                                                         ௜ܰ௞ = ௜ܰ௞௣ + ே೔ೖభே೔ೖమே೔ೖయே೔ೖమே೔ೖయାே೔ೖభேభೖయାே೔ೖభே೔ೖమ.     (11) 
 
 In the load-sharing structures, as the expert data on the number of failures in the case when 
entire cut load is taken over by one device are not available, a parallel RS can be adopted.   
 In operation, the CSD cut elements may become failure and cannot be operated. If in a two-
element RS with stand-by reserve one element is non-operational then it becomes a single element 
structure. If in a three-element RS with stand-by reserve one element is non-operational then it 
becomes a two-element structure with one element in reserve. If in that structure two elements are 
non-operational then it becomes a single-element structure. Identical situation occurs in the case of 
element failures in the parallel RS systems.  
 
3.2. FUZZY APPROACH TO THE CUT FAILURE NUMBER ESTIMATION 
 
 Our variables LV are estimates of the average linguistic annual numbers of CFs failures Nik of 
cuts CSDik and Nikl devices Dikl, i = 1,2,   ,I,  k = 1,2,…,K, l = 1,2, …,L. We define those variables 
and their linguistic term-sets LT-S. We assume seven-element sets of those values: minimum, very 
small, small, medium, high, very high and critical. We assume that these values represent the 
reliability state of appropriate objects [12]. 
 From the expert investigations we obtain the universe of discourse values UDik of individual 
cuts. Each of those universes is divided into six equal intervals. We assume that the boundary 
values   
 
              ௜ܰ௞ଵ , ௜ܰ௞ଶ , … , ௜ܰ௞଻      (12) 
 
of those intervals are singleton member functions of the corresponding linguistic variable values 
LVik [12]. 
 The universe of discourse values UDik are the variability intervals of the numbers of failures of 
cuts CSDik appearing on the left hand sides of equations (7) – (11). In the case of a single element 
RS, parallel RS and with stand-by reserve composed of identical elements in terms of reliability, 
we can easily ximum numbers of element failures  determine the minimum and ma                                                                   ௜ܰ௞௟ଵ , ௜ܰ௞௟଻                                                           (13) 
 

 
and their universes of discourse UDikl and then the singleton seven-element member functions: 
 



                                                            ௜ܰ௞௟ଵ  , ௜ܰ௞௟ଶ , … , ௜ܰ௞௟ ଻ .                                                  (14) 
 
 If all the cut elements remain in the minimum state then the cut is also in the minimum state. If 
all the cut elements remain in the critical state then the cut is also in the critical state. The situation 
is more difficult when the cut elements are not identical in terms of reliability. Then expert 
opinion-based heuristic solutions must be applied. 
 
4. CASE STUDY 
 
 The example pertains to the prediction of a seagoing ship propulsion risk. Determination of the 
probability of loss of ship propulsion capability and its consequences are difficult because of the 
lack of appropriate data. This applies in particular to the risk estimates connected with decisions 
made in the ship operation phase.   
 The object of investigation was a PS consisting of a low-speed piston combustion engine and 
a constant pitch propeller, installed in a container carrier operating on the Europe - North America 
line.  
 The FT of analysed PS ICF failure is shown in the Figure 2. For reasons of huge number of 
SDs the structure of a fuel oil subsystem is only described within the lowest FT level. The PS 
subsystems’ SSs make the CSS cuts and their sets of devices SDs – the CSD cuts. In considered 
case the system FT consists of alternatives of those cuts. In general such FT structure doesn’t have 
to appear in the case of that PS type. 
 

     
 
Fig. 2. Fault tree of a ship propulsion system ICF. Legend: PS – propulsion system; ICF – immediate catastrophic 
failure; CF – catastrophic failure. 
CSSi – subsystem cut, i =1 -fuel oil subsystem, 2 -sea water cooling subs.; 3 – low temperature fresh water cooling 
subs.; 4 – high temperature fresh water cooling subs.; 5 – startig air subs.; 6 – lubrication oil subs.;  7 – cylinder 
lubrication oil subs.; 8 - electrical subs.; 9 – main engine subs.; 10 – remote control subs.; 11 – propeller + shaft line  
subs.  
CSD1k – set of devices’ cut; ik = 11 - fuel oil service tanks; 12 – f. o. supply pumps; 13 – f. o. circulating pumps; 14 – 
f. o. heaters; 15 -filters; 16 – viscosity control arrangement; 17 - piping’s heating up steam arrangement. 
 
 The FT allows the building the neural network. The sets of input signals for the network are 
assigned.  
 Using the code [8], five categories of ICF consequences were distinguished, including very 
serious casualty C1, serious casualty C2 and three incident categories. Consequences of the 
alternative of first two events were investigated (C = C1 ∩ C2). 
 The consequences are connected with losses. They may involve people, artifacts and natural 
environment. They are expressed in physical and/or financial values. Detailed data on losses are 
difficult to obtain, particularly as regards rare events like the C1 and C2 type consequences. They 



cannot be obtained from experts either, as most of them have never experienced that type of 
events. In such situation, the risk was related only to the type C consequences of an ICF event. 
 
4.1. ACQUISITION AND PROCESSING OF EXPERT OPINIONS  
 
 The experts in the ICF event investigation were ship mechanical engineers with multi-year 
experience (50 persons). Special questionnaires were prepared for them, containing definition of 
the investigated object, SS and SD schemes, precisely formulated questions and tables for answers. 
The questions asked pertained to the number of ICF type events caused by equipment failures or 
human errors within one year and the share of time at sea in the ship operation time (PS 
observation time by expert). These were the only questions requiring numerical answers.   
 Other questions were of a linguistic character and pertained to the share of CF type failures of 
individual CSS in the annual number of the PS ICF type events and the share of CF failures of 
individual CSD in the annual numbers of CSS failures. In both presented cases the experts chose 
one of five values of the linguistic variables: very great, great, medium, small, very small. The 
elicited linguistic opinions were compared in pairs and then processed by the AHP method [6,11]. 
The obtained distribution of subsystem shares complies with the engineering knowledge. The 
greatest shares are due to the main engine and the electric power and fuel supply systems and the 
smallest - due to the propeller with shaft line.   
 The experts in the ICF event consequence field were ship mechanical engineers and navigation 
officers (37 persons). A similar questionnaire was prepared with questions about preferences of 5 
possible consequences (C1 - very serious casualty, C2 - serious casualty and 3 types of incidents) 
of the ICF type event occurrence. The casualty types were defined in accordance with the code [8]. 
The experts could choose from the following preferences: equivalence, weak preference, 
significant preference, strong preference, absolute preference, and inverse of these preferences 
[6,11]. After processing of the so obtained data by the AHP method, a normalized vector of shares 
of the ICF type event consequences was obtained.  
 
4.2. SOME RESULTS 
 
 The PR model was subjected to a broad range of tests. Some of the results are presented below. 
Figures 3 and 4 present the probability of the occurrence of defined numbers ICF type events of PS 
in dependence on the prediction time, when PS is in excellent and critical reliability states. The 
number of ICF events from 1 to 5 was adopted for each of those states. The probability was 
performed for the prediction time t(p) = 1, 3 and 6 months. The diagrams 3 and 4 indicate that the 
occurrence of ICF events and their numbers are significantly greater when PS is in the critical state 
than in excellent state. 
 
 
 
 
 
 



     
     
Figure.3. Probability of the ICF type events versus the numbers of those events for the selected times of risk 
prediction. PS reliability state is excellent. 
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Fig. 4. Probability of the ICF type events versus the number of those events for the selected times of risk prediction. 
            PS reliability state is critical. 
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Fig. 5. Propulsion risk versus the numbers of ICF events for selected prediction times. PS reliability state is excellent. 
 
 Figures 5 and 6 presents the PR risk, i.e. the risk of type C consequences after occurrence of an 
ICF event, for the prediction times t(p) = 1, 3 and 6 months, when PS is in the excellent and critical 
states. The diagrams show increased risk with deteriorating PS reliability.   
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Fig. 6. Propulsion risk versus the numbers of the ICF events for selected times of prediction. PS reliability state 
            is critical. 
 
5. SUMMARY 
 
 A fuzzy-neural model of risk prediction has been developed, based on the knowledge acquired 
from experts. It is a model of homogeneous Poisson renewal process, where parameters are 
determined by means of a neural network. The model parameter estimation data were acquired 
from experts - the modeled system operators. Their opinions were elicited in a numerical form as 
regards the events observed by them many times and in a linguistic form in the cases where their 
knowledge might be less precise. The neural network was tuned with the elicited opinions. The 
network may be calibrated with data collected in the system operation process. In this way the 
Homogeneous Poisson Process can be adapted to real operating conditions - it becomes non-
homogeneous in steps. The model allows prediction of the risk of dangerous events consequences, 
which may occur due to different systems.  
 In the expert investigations we have to rely on data obtained from experts and models are 
constructed from that data. The adequacy and type of obtained information depends on the form 
and adequacy of the data. The expert competence level must not be exceeded. In the case reported 
here, it might have happened in the estimates of occurrence of the ICF event consequences. In the 
authors' opinion, the competence level was not exceeded as the remaining data are concerned, as 
the choice of experts was careful.   
 The expert-elicited data have an impact on the level of adequacy of models used in the 
investigations - like data like model. A number of simplifying assumptions had to be made. Some 
of them are the following: two states of the use of modeled objects, failures possible only in the 
active use state, homogeneity of the Poisson renewal process, the cut notion, definition of the ICF 
event consequences etc.   
 Results of the propulsion risk estimates quoted in section 4 are not questionable as regards the 
order of magnitude of the numbers. Events from the subset of C consequences occur at present in 
about 2% of the ship population (20 ships out of 1000 in a year). This applies to ships above 500 
GT. There are at present about 50 thousand such ships (7,13). The results are also adequate in 
terms of trends of changes in the investigated values, which are in compliance with the character 
of the respective processes.   
 It has to be taken into account that results of a subjective character may be (but not necessarily) 
subject to greater errors than those obtained in a real operating process. The adequacy of such 
investigations depends on the method applied, and particularly on the proper choice of experts, 
their motivation, as well as the type of questions asked. In the expert investigations the fuzzy 
methods are especially useful.  



 In the authors' opinion, the main difficulty in the neural network application for modeling is the 
necessity of having a considerable amount of input and output data for tuning the models. In the 
prospective investigations the data are generally in short supply. They may be gathered after some 
time in the operating process of the respective objects, but that may appear to be too late.  
 There is a chance of further developing and using the risk prediction program, developed under 
the project, aboard ships and not only for the propulsion systems. It could be coupled with the 
existing equipment renewal management or operating management programs.  
 The investigations presented in the paper were supported by Ministry of Science and Higher 
Education in the frame of a study project. 
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