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Abstract 

This paper shows results of numerical solutions an modified Reynolds equations for laminar unsteady oil 
flow in slide journal bearing gap. Laminar unsteady oil flow is performed during periodic and unperiodic 
perturbations of bearing load or is caused by the changes of gap height in time. During modelling crossbar bearing 
operations in combustion engines, bearing movement perturbations from engine vertical vibrations causes velocity 
flow perturbations of lubricating oil on the shaft in the circumferential direction. This solution example apply to 
isothermal bearing model with infinity length. Lubricating oil used in this model has Newtonian properties and 
constant dynamic viscosity. Results are presented in the dimensionless hydrodynamic pressure and tangential tension 
distribution diagrams. Diagrams also presents capacity and  friction force  change during the time of velocity 
perturbations. Received solutions were compared with the solution received by the stationary lubrication flow in the 
slide journal bearing, which were made with the same parameter assumption by constant dynamic oil viscosity. 
Isothermal bearing model is similar to friction node model by steady-state heat load conditions. Described effect can 
be used as on example of modeling the bearing friction node operations in reciprocating movement during 
exploitation of engines and machines.     
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1. Introduction 
 

This article refer to the unsteady, laminar flows issue, in which modified Reynolds number 
Re* is [5],[6] smaller or equal to 2.  Laminar, unsteady oil flow is performed during periodic and  
unperiodic perturbations of bearing load or is caused by the changes of gap height in the time. 
Above perturbations occur mostly during the starting and stopping of machine. Lubricated oil 
disturbance velocity  the pin and on the bearing shell was also consider in the article. Reynolds 
equation system describing Newtonian oil flow in the gap of transversal slide bearing was 
discussed in the articles [4],[5]. Velocity perturbations of oil lubricated flow on the journal can be 
caused by torsion journal vibrations during the rotary movement of the shaft. Perturbations  are 
proportional to torsion vibration amplitude, frequent constraint and to journal radius of the shaft. 
Oil velocity perturbations on the shell surface can be caused by rotary vibration of the shell 
together with bearing casing. This movement can be consider as kinematical constraint for whole 
bearing friction node. Isothermal bearing model can be approximate to bearing operation in 
friction node under steady thermal load conditions for example bearing in generating set on ship. 
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2. Hydrodynamic pressure and capacity forces 
 
        The unsteady, laminar and isotherm flow Newtonian oil in journal bearing gap is described 
for modified Reynolds equation [1],[2] from Newtonian oil with constant and variable dynamic 
viscosity depended for pressure. In considered model we assume small unsteady disturbances and 
in order to maintain the laminar flow,  oil velocity Vi

* and pressure p1
* are total of dependent 

quantities iV~ ; 1
~p  and independent quantities  from time [4], [6] according to equation (1). 1; pVi
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Unsteady components of dimensionless oil velocity and pressure are [4] in following form of 
infinite series :  
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where:  
 ω0 – angular velocity perturbations in unsteady flow, 
  j - imaginary unit j= 1− .  
 
Components of oil velocity Vϕ ,Vr ,Vz in cylindrical co-ordinates r,φ,z have presented as V1,V2 ,V3 
in dimensionless [1] form:  
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where:  
U – peripheral journal velocity U=ωR,  
ω – angular journal velocity,  
R – radius of the journal, 
ψ–  dimensionless radial clearance ( ),  34 1010 −− ≤ψ≤
2b – length of bearing,  
L1 – dimensionless bearing length,     
ε – radial clearance :  
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Putting following quantities [1],[5]: dimensionless values density ρ1, hydrodynamic pressure 

time t1, longitudinal gap height h1, radial co-ordinate r1 and co-ordinate z1.  p1 ,∗
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Rule of putting dimensionless velocity and pressure quantities in unsteady and steady part of the 
flow stays similar. Following symbols with bottom zero index signify density ρ0, dynamic 
viscosity η0 , pressure p0 and time t0 describe characteristic dimension values assigned to adequate 
quantities.  Reynolds number Re , modified Reynolds number Re* are in form [1]:    
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The equation solution Reynolds equation [2],[3] with disturbances of peripheral velocity V10 on 
the journal for bearing with infinity length determine unsteady dimensionless hydrodynamic 
pressure function in following form:  1

~p
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where: 
h1 - height of gap, 
h1e - height of gap by film ended ϕ = ϕe , 
λ- eccentricity ratio.      
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Quantity  γV are factor of scale for velocity perturbations, dependent for acceptant of term series 
(2). Pressure p10 is located in the oil gap by steady flow and by constant oil dynamic viscosity.     

Sum for series and in right side of Reynolds solution equation (7) are results from 

conservation of the momentum solutions and were define in work [1],[2].  
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   In  presented calculation way an expression value is assumed  nρ1Re* = 12, what is 
approximately equivalent to force over first frequency torsion vibrations force of  six cylinder 
engine shaft. Examples apply to bearing with constant dependent eccentricity λ=0,6.   In case 
where oil velocity perturbations are caused by forced vibrations of engine then the number n in 
equation (7) define multiplication of perturbation frequency ω0 to angular velocity of engine 
crankshaft  ω.  Multiplication factor n is equal to number of cylinder c in two-stroke engine  (s=2) 
or in four-stroke engine (s=4)  to number of cylinders c/2 : 
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We analyst cylindrical bearing infinite length with circumferential velocity perturbations on the 
journal V10. Circumferential velocity perturbations are caused by torsional vibrations shaft (on the 
journal). In the further numerical analysis relation time t0 was taken into account as a propagation 
period of axial velocity perturbation of lubricating oil.   
Four velocities perturbations will analysed in this article. Pressure perturbation 1p~  course in point 
φ=160° presented Fig.1 by following circumferential velocity perturbations on the journal V10= 



0,01; 0,025; 0,05; 0,075. Changes of  pressure 1p~  are asymmetrical in relation to the time. The 
growth of the pressure is smaller than his fall. Sizes these grow when the size of the perturbations 
of the velocity grows up.  
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Fig.1. Pressure distributions 1

~p  in place ϕ=160° in the time t1 by velocity perturbations: 
1) V10=0,01; V1h=0; 2) V10=0,025; V1h=0; 3) V10=0,05; V1h=0; 4) V10=0,075; V1h=0 

 
       Capacity force W for cylindrical slide journal bearing has following components Wx and Wy  
to be determined [2],[6] in the local co-ordinate systems in Fig. 2. Capacity force W is resultant 
force from concurrent pressure forces configuration.    
 

                                            
                         Fig. 2. Capacity force W and components Wx and Wy in the local co-ordinate system 
    
Thus dimensionless components W1x and W1y   of capacity forces W1 are as follows [2]: 
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where:   
W0 - characteristic value of capacity force W0≡ 2Rbp0 
 
Hydrodynamic capacity force change caused by the pressure perturbation is calculate from:  
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          Pressure in the bearing during the perturbation is a total of stationary flow pressure and 
perturbation pressure according to (1) According to mentioned equation [2] if we provide 
stationary flow pressure p1 we will obtain capacity force W1. Figure 3 also presents change 
capacity calculation results by four oil viscosity perturbations. Hydrodynamic capacity force 1W~  
changes periodically with a period equal to perturbation velocity. In case of velocity perturbation 
in the bearing pin, increase of capacity force above the stationary condition value last no longer 
than half of the perturbation period and the increase of capacity force is bigger than the decrease in 
the remaining time.  
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Fig.3.  Change the dimensionless  capacity forces  in the time t1 by velocity  1W~

perturbations: 1) V10=0,01; 2) V10=0,025;  3) V10=0,05; 4) V10=0,075;  
 

increase of capacity force than decrease. It is opposite in case of oil peripheral velocity 
perturbation on the shell surface, but his diagrams are not presented in his article. Capacity force 



course in time is not symmetrical for different perturbation of velocity quantities on the pin. The 
fall of change the capacity force is smaller than his growth. Sizes these grow when the size of the 
perturbations of the velocity grows up.  

 
3. Elementary friction force and friction force in bearing gap 
 
        Elementary friction forces τ and this change τ~ for dimension an dimensionless  form 1

~τ , we 
calcullated as tangential stress (pressure) by newtonian oil in formula: 
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     Velocity circumferential perturbation (7) [3] are in formula:  
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 Components of series P(k), A(k) i B(k) from formula (14) are in following forms [3]:  
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       Additional symbol s marking dimensionless parameter height of gap ( ). In numerical 
calculation example oil with constant density was assume, what is equivalent to quantity ρ1.  
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where:   
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Fig.4. Tangential pressure distributions 1

~τ  in place ϕ=160° in the time t1 by velocity  
perturbations:1) V10=0,01; 2) V10=0,025; 3) V10=0,05; 4) V10=0,075 

 
       The results change tangential pressure 1

~τ  distribution in the time t1 show Fig. 4. in place  of 
coordinate φ=160°. Change elementary friction forces (tangential pressure) 1

~τ  perturbation are 
values different sign from initial perturbations V10  and absolutely lesser.  
 

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1 2

3 4T~1

t 1

 
Fig.5.  Change the dimensionless  friction  forces  in the time t1 by velocity  1T~



perturbations:1) V10=0,01; 2) V10=0,025; 3) V10=0,05; 4) V10=0,075 
 
   Friction forces T and this change T~ for dimension an dimensionless  form 1T~ , we calcullated as 
sum tangential stress (pressure) in circumference co-ordinate bearing  by formula:   
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where:   
T0 - characteristic value of friction force ψ00 WT =                                           

      In Fig. 5 presented change the dimensionless friction forces  in the time t1 by four of 
velocity perturbation.  

1T~

 
4. Conclusions 
 
Presented Reynolds equation solution for unsteady laminar Newtonian flow of lubricated oil to 
enable initial opinion to hydrodynamic pressure, elementary friction pressure distribution and 
capacity, friction forces as a basic slide bearing operating parameter. Unsteady velocity 
perturbation on the journal and sleeve effect on capacity and friction forces in lubricated gap. 
Capacity and friction forces variation in bearing have periodical character equal to periodical 
velocity perturbation time and this variations value and character depend on type of perturbation. 
Author is aware of simplifications that were assumed in presented model which apply to 
Newtonian oil and to isothermal bearing model. Despite that presented calculation example apply 
to bearing with infinity length, obtained conclusions can be useful to elementary friction pressure 
and friction forces distribution by laminar, unsteady lubrication of cylindrical slide bearing with 
finite length.  
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