PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach

Autorzy
Identyfikatory
Warianty tytułu
PL
Badanie oddziaływań między kwasami huminowymi i fulerenami C60 z wykorzystaniem spektroskopii fluorescencyjnej
Języki publikacji
EN
Abstrakty
EN
The interaction between buckminsterfullerene C60 and humic acids (HA) of different origins was compared using fluorescence spectroscopy as a function of pH, humic acid concentration, ionic strength. Binding constants between fullerene and humic acids were calculated. It can be suggested that the complexation was driven by hydrophobic interactions depending on the properties of the interacting compounds. Hydrophobic interaction model as indicated by linear Stern-Volmer plots and high Kd values is characterizing the interaction between buckminsterfullerene C60 and humic acids The results of this study support the development of understanding of the fate of nanomaterials in the environment as well as the development of analytical methods for nanomaterials in waters and wastewater treatment approaches.
PL
Porównywano oddziaływania między buckminsterfulerenami C60 i kwasami huminowymi (HA) różnego pochodzenia w zależności od pH, stęzenia kwasów huminowych i siły jonowej. Do badań stosowano spektroskopię fluorescencyjną. Obliczono stałe trwałości związków kwasów huminowymi i fulerenów. Można przypuszczać, że kompleksowanie jest powodowane oddziaływaniami hydrofobowmi, zależnymi od właściwości związków. Model interakcji hydrofobowych wskazanych przez liniowe zależności Sterna-Volmera i duże wartości Kd charakteryzują interakcje między buckminsterfulerenami C60 i kwasami huminowymi. Wyniki opisanych badań są ważne dla poznania losu nanomateriałów w środowisku, a także dla rozwoju metod analizy zawartości nanomateriałów w wodach oraz metod oczyszczania ścieków.
Rocznik
Strony
351--362
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
autor
  • Department of Environmental Science, University of Latvia, Raina blvd. 19, Riga, LV 1586, Latvia, maris.klavins@lu.lv
Bibliografia
  • [1] Bogdanov A.A., Deininger D. and Dyuzhev G.A.: Development prospects of the commercial production of fullerenes. Techn. Physics, 2000, 45, 521-527.
  • [2] Masciangioli T. and Zhang W.X.: Environmental technologies at the nanoscale. Environ. Sci. Technol., 2003, 37, 102A-108A.
  • [3] Klaine S.J., Alvarez P.J.J., Batley G.E., Fernandes T.F., Handy R.D., Lyon D.Y., Mahendra S., McLaughlin M.J. and Lead J.R.: Nanomaterials in the environment: behaviour, fate, bioavailability and effects. Environ. Toxicol. Chem., 2008, 27(9), 1825-1851.
  • [4] Velzeboer I., Hendriks A.J., Ragas A.M.J. and Meent D.: Aquatic ecotoxicity tests of some nanomaterials. Environ. Toxicol. Chem., 2008, 27(9), 1942-1947.
  • [5] Usenko C.Y., Harper S.L. and Tanguay R.L.: In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon, 2007, 45, 1891-1898.
  • [6] Oberdorster G., Oberdorster E. and Oberdorster J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspectives, 2005, 113(7), 823-839.
  • [7] Illes E. and Tombacz E.: The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci., 2006, 295, 115-123.
  • [8] Baalousha M., Manciulea A., Comberland S., Kendall K. and Lead J.R.: Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ. Toxicol. Chem., 2008, 27(9), 1875-1882.
  • [9] Neff J.C. and Asner G.P.: Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems, 2001, 4(1), 29-48.
  • [10] Stevenson F.J.: Humus chemistry: Genesis, composition, reactions. 2nd ed.Wiley, N.Y. 1994, 496 pp.
  • [11] Depetris P.J. and Kempe S.: Carbon dynamics and sources in the Parana River. Limnol. Oceanogra., 1993, 38(2), 382-395.
  • [12] Pettine M., Patrolecco L., Camusso M. and Crescenzio S.: Transport of carbon and nitrogen to the Northern Adriatic Sea by the Po River. Estuar., Coast. Shelf Sci., 1998, 46, 127-142.
  • [13] Wasterhoff P. and Anning D.: Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. J. Hydrol., 2000, 236, 202-222.
  • [14] Evans C.D., Monteith D.T. and Cooper D.M.: Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ. Pollut., 2005, 137, 55-71.
  • [15] Karthikeyan K.G. and Chorover J.: Humic acid complexation of basic and neutral polycyclic aromatic compounds. Chemosphere, 2002, 48, 955-964.
  • [16] Nakashima K., Maki M., Ishikawa T., Yoshikawa T., Gong Y.-K. and Miyajima T.: Fluorescence studies on binding of pyrene and its derivatives to humic acid. Spectrochim. Acta, Pt A, 2007, 67, 930-935.
  • [17] Terashima M. and Nagao S.: Solubilization of [60] fullerene in water by aquatic humic substances. Chem. Lett., 2007, 36(2), 302-303.
  • [18] Casadei N., Thomassin M., Guillaume Y.C. and Andre C.: A humic acid stationary phase for high performance liquid chromatography separation of buckminsterfullerenes: theoretical and practical aspects. Anal. Chim. Acta, 2007, 588, 268-273.
  • [19] Chen K.L. and Elimelech M.: Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci., 2007, 309, 126-134.
  • [20] Bai Y., Wu F., Liu C., Guo C., Fu P., Li W. and Xing B.: Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study. Environ. Toxicol. Chem., 2008, 27(1), 95-102.
  • [21] Peuravuori J.: Partition coefficients of pyrene to lake aquatic humic matter determined by fluorescence quenching and solubility enhancement. Anal. Chim. Acta, 2001, 429(1), 65-73.
  • [22] Tan K.H.: Soil Sampling, Preparation, and Analysis. Second Ed., Taylor & Francis, N.Y. 2005, 326 pp.
  • [23] Thurman E.M. and Malcolm R.L.: Preparative isolation of aquatic humic substances. Environ. Sci. Technol., 1981, 15, 463-466.
  • [24] Chen Z., Westerhoff P. and Herckes P.: Quantification of C60 fullerene concentrations in water. Environ. Toxicol. Chem., 2008, 27(9), 1852-1859.
  • [25] Peuravuori J., Koivikko R. and Pihlaja K.: Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Res., 2002, 36, 4552-4562.
  • [26] Alberts J.J. and Takacs M.: Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms. Org. Geochem., 2004, 35, 243-256.
  • [27] Gauthier T.D., Shane E.C., Guerlayn W.F., Seilz W.R. and Grant C.L.: Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol., 1986, 20, 1162-1166.
  • [28] Manciulea A., Baker A. and Lead J.R.: A fluorescence quenching study of the interaction of Suwannee river fulvic acid with iron oxide nanoparticles. Chemosphere 2009, 76, 1023-1027.
  • [29] Gadad P., Lei H. and Nanny M.A.: Characterization of noncovalent interactions between 6-propionyldimethylaminonapthalene (PRODAN) and dissolved fulvic and humic acids. Water Res., 2007, 41, 4488-4496.
  • [30] Lee C.L., Kuo L.J., Wang H.L. and Hsieh P.C.: Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three stage variation model. Water Res., 2003, 37, 4250-4258.
  • [31] Zhang C., Shen W., Fan R., Zhang G., Shangguan L., Chao J., Shuang S., Dong C. and Choi M.M.F.: Study of the contact charge transfer behavior between cryptophanes (A and E) and fullerene by absorption, fluorescence and 1H NMR spectroscopy. Anal. Chim. Acta, 2009. 650, 118-123.
  • [32] Isaacson C. W., Kleber M. and Field J.A.: Quantitative analysis of fullerene nanomaterials in environmental systems: A critical review. Environ. Sci. Technol., 2009, 43 (17), 6463-6474.
  • [33] Wilson M.A., Tran N.H., Milev A.S., Kannangara G.S.K., Volk H. and Lu M.G.C.: Nanomaterials in soils. Geoderma, 2008, 146, 291-302.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0030-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.