PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drug release from hydrogel matrices

Identyfikatory
Warianty tytułu
PL
Uwalnianie leków z hydrożeli
Języki publikacji
EN
Abstrakty
EN
Description of the kinetics of drug release from hydrogels is a domain of steadily increasing academic and industrial importance. The aim of this paper is to review mathematical approaches to drug release from hydrogel matrix devices. In the first section the parameters of hydrogel structure are described. Than the phenomena that influencing resulting drug release are discussed. Finally, mechanisms of physical release and release with chemical reaction are studied. In this section mathematical expression that predicting drug release profiles are described.
PL
Zarówno z naukowego, jak i praktycznego punktu widzenia bardzo ważny jest opis kinetyki uwalniania leków z hydrożeli. Celem tego artykułu jest przegląd opisanych w literaturze modeli matematycznych uwalniania leków z matryc hydrożelowych. W pierwszej części omówiono parametry opisujące strukturę hydrożelu. Następnie opisano zjawiska wpływające na mechanizm uwalniania leków. W ostatniej części przeglądu literatury zostały przedstawione mechanizmy uwalniania. W tej części zebrano wyrażenia matematyczne stosowane do opisu profili uwalniania leków.
Rocznik
Strony
117--136
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] Li H., Luo R. and Lam K.Y.: Modeling of environmentally sensitive hydrogels for drug delivery: An overview and recent developments. Front. Drug Des. Discov., 2006, 2, 295-331.
  • [2] Van Tomme S.R., Storm G. and Hennink W.E.: In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm., 2008, 355, 1-18.
  • [3] Barbucci R.: Hydrogels: Biological properties and applications. Springer, Milan 2009.
  • [4] Lin C.C. and Metters A.T.: Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev., 2006, 58, 1379-1408.
  • [5] Klouda L. and Mikos A.G.: Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 2008, 68, 34-45.
  • [6] Schuetz Y.B., Gurny R. and Jordan O.: Novel thermoresponsive hydrogel based on chitosan. Eur. J. Pharm. Biopharm., 2000, 49, 177-182.
  • [7] Siepmann J. and Siepmann F.: Mathematical mdeling of drug delivery. Int. J. Pharm., 2008, 364, 328-343.
  • [8] Peppas N.A. et al: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50, 27-46.
  • [9] Siepmann J. and Gopferich A.: Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Del. Rev., 2001, 48, 229-247.
  • [10] Zarzycki R.: Wymiana ciepła i ruch masy w inżynierii środowiska. WNT, Warszawa 2005.
  • [11] Arifin D.Y., Lee L.Y. and Wang C.H.: Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv. Drug Deliv. Rev., 2006, 58, 1247-1325.
  • [12] Bajpai A.K. et al: Responsive polymers in cogntrolled drug delivery. Progr. Polym. Sci., 2008, 33, 1088-1118.
  • [13] Costa P. and Sousa Lobo J.M.: Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13, 123-133.
  • [14] Cooke N.E. and Chen C.: A contribution to a mathematical theory for polymer-based controlled release devices. Int. J. Pharm., 1995, 115, 17-27.
  • [15] Grassi M. and Grassi G.: Mathematical modelling and controlled drug delivery: Matrix systems. Curr. Drug Deliv., 2005, 2, 97-116.
  • [16] Berger J. et al: Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57, 19-34.
  • [17] Zarzycki R., Rogacki G. and Modrzejewska Z.: Modeling of drug release from thermosensitive chitosan hydrogels. J. Control Release, in press.
  • [18] Gopferich A.: Polymer degradation and erosion: Mechanisms and applications. Eur. J. Pharm. Biopharm., 1996, 42, 1-11.
  • [19] Gopferich A.: Mechanism of polymer degradation and erosion. Biomaterials, 1996, 17, 103-114.
  • [20] von Burkersroda F., Schedl L. and Gopferich A.: Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002, 23, 4221-4231.
  • [21] Colombo P., et al: Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J. Control. Release., 1996, 39, 231-237.
  • [22] Peppas N.A. and Sahlin J.J.: A simple equation for the description of solute release. 3. Coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57, 169-172.
  • [23] Siepmann J., et al: HPMC - Matrices for controlled drug delivery: A new model combining diffusion, swelling, and dissolution mechanism and predicting the release kinetics. Pharm. Res., 1999, 16, 1748-1756.
  • [24] Siepmann J. and Peppas N.A.: Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm. Res., 2000, 17, 1290-1298.
  • [25] Streubel A. et al: Bimodal drug release achieved with multi-layer matrix tablets: transport mechanisms and device design. J. Control Release, 2000, 69, 455-468.
  • [26] Katzhendler I. et al: Modeling of drug release from erodible tablets. J. Pharm. Sci., 1997, 86, 110-115.
  • [27] Charlier A., Leclerc B. and Couarraze G.: Release of mifepristone from biodegradable matrices: Experimental and theoretical evaluations. J. Pharm. Sci., 1997, 86, 110-115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0030-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.