PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyphenated and unconventional methods for searching volatile cancer biomarkers

Identyfikatory
Warianty tytułu
PL
Łączone i niekonwencjonalne metody poszukiwania lotnych biomarkerów chorób nowotworowych
Języki publikacji
EN
Abstrakty
EN
Volatile organic compounds produced inside the body provide valuable information about human state of health and they are detected in breath, blood and urine samples. Therefore, volatile biomarker analysis seems to become accurate and fast method for tumour detection. So far, there are known several volatile organic compounds (VOCs) recognized as potential cancer biomarkers. For the detection of VOCs different analytical techniques are used. The most popular is gas chromatography coupled with mass spectrometry (GC/MS). More recently, selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and ion mobility spectrometry (IMS) are also applied for biomarker research. Besides typical instrumental methods used for VOCs analysis, unconventional methods such as sensitive canine sense of smell can be used. In recent years, this very sensitive scent is also used for cancer biomarker detection. Dogs are trained to recognize the smell of skin, breath or urine samples from patient with different kind of cancer from the control group. The application of dogs’ smell for the preliminary screening of tumour in human body is painless, noninvasive and fast method. Additionally, it does not need the preconcentration of analytes before the analysis.
PL
Lotne związki organiczne (VOCs), powstające wewnątrz organizmu ludzkiego dostarczają wielu cennych informacji na temat stanu zdrowia pacjenta i są one identyfikowane w probkach powietrza wydychanego, krwi i moczu. Wiedzę na ten temat wykorzystuje się podczas analizy lotnych biomarkerów, ktora w przyszłości może zaowocowa. opracowaniem nieinwazyjnej metody diagnostyki medycznej stosowanej do wczesnego wykrywania nowotworow. Obecnie znanych jest kilkadziesiąt związkow organicznych, ktore uznane zostały za potencjalne biomarkery chorób nowotworowych. Substancje lotne są analizowane rożnymi dostępnymi technikami analitycznymi. Wśród nich najbardziej znana jest chromatografia gazowa sprzężona ze spektrometrii mas (GC/MS). Jednakże do oznaczania biomarkerow wykorzystywana jest również spektrometria mas z jonizacją w strumieniu wybranych jonów (SIFT-MS), spektrometria mas z reakcją przeniesienia protonu (PTR-MS) oraz spektrometria ruchliwości jonów (IMS). Techniki te umożliwiają bezpośrednią analizę np. powietrza wydychanego, która prowadzona jest w czasie rzeczywistym. Oprocz tradycyjnych metod instrumentalnych stosowanych do wykrywania biomarkerow wykorzystywana jest rownież dość niekonwencjonalna metoda korzystująca z niezwykle czułego powonienia psów. Tresowane psy są w stanie niemal bezbłędnie odróżnić po zapachu probkę moczu, oddechu oraz skory objętej czerniakiem, pochodzącą od pacjenta i od osoby zdrowej. Technika ta jest bezbolesna, nieinwazyjna oraz szybka. Ponadto próbki do analizy nie muszą być wcześniej wzbogacone.
Rocznik
Strony
9--23
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika
Bibliografia
  • [1] Sung H.J. and Cho J.Y.: Biomarkers for the lung cancer diagnosis and their advances in proteomics.BMB Reports, 2008, 41, 61-625.
  • [2] Stoll B.A.: Premalignant breast lesions: Role for biological markers in predicting progression to cancer.Eur. J. Cancer, 1999, 35(5), 693-697.
  • [3] Callagy G.M., Pharoah P.D., Pinder S.E., Hsu F.D., Nielsen T.O., Ragaz J., Ellis I.O., Huntsman D. and Caldas C.: Bcl-2 Is a prognostic marker in breast cancer independently of the Nottingham prognostic index. Clin. Cancer Res., 2006, 12(8), 2468-2475.
  • [4] Buszewski B., Kęsy M., Ligor T. and Amann A.: Human exhaled air analytics: biomarkers of diseases. Biomed. Chromatogr., 2007, 21, 553-566.
  • [5] Miekisch W., Schubert J.K. and Noeldge-Schomburg G.F.E.: Diagnostic potential of breath analysis - focus on volatile organic compounds. Clin. Chim. Acta, 2004, 347, 25-39.
  • [6] Phillips M.: Method for the collection and assay of volatile organic compounds in breath. Anal. Biochem., 1997, 247, 272-278.
  • [7] Anh D.T.V., Olthuis W. and Bergveld P.: A hydrogen peroxide sensor for exhaled breath measurement. Sens. Actuators, B, 2005, 111-112, 494-499.
  • [8] Prado C., Marin P. and Periago J.F.: Application of solid-phase microextraction and gas chromatography mass spectrometry to the determination of volatile organic compounds in end-exhaled breath samples.J. Chromatogr. A, 2003, 1011, 125-134.
  • [9] Mueller W., Schubert J., Benzing A. and Geiger K.: Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography-flame ionization detection-mass spectrometry. J. Chromatogr. B, 1998, 716, 27-38.
  • [10] Hansel A., Jordan A., Holzinger R., Prazeller P., Vogel W. and Lindinger W.: Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int. J. Mass. Spectrom. Ion. Processes, 1995, 149-150, 609-619.
  • [11] Abbott S.M., Elder J.B., Španel P. and Smith D.: Quantification of acetonitrile in exhaled breath and urinary headspace using selected ion flow tube mass spectrometry. Int. J. Mass. Spectrom., 2003, 228, 655-665.
  • [12] Ruzsanyi V., Sielemann S. and Baumbach J.I.: Determination of VOCs in human breath using IMS. IJIMS, 2002, 5(3), 45-48.
  • [13] Gordon R.T., Schatz C.B., Myers L.J., Kosty M., Gonczy C. and Kroener J.: The use of canines in the detection of human cancers. J. Alt. Compl. Med., 2008, 14(1), 61-67.
  • [14] Furton K.G. and Myers L.J.: The scientific foundation and efficacy of use of canines as chemical detectors of explosives. Talanta, 2001, 54, 487-500.
  • [15] Spanel P., Smith D., Holland T.A., Al Singary W. and Elder J.B.: Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun. Mass. Spectrom., 1999, 13, 1354-1359.
  • [16] Chen X., Xu F., Wang Y., Pan Y., Lu D. and Wang P.: A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer, 2007, 110, 835- 844.
  • [17] Deng C., Zhang X. and Li N.: Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J. Chromatogr. B, 2004, 808, 269-277.
  • [18] Phillips M., Glesson K., Hughes J.M.B., Greenberg J., Cataneo R.N., Baker L. and McVay W.P.: Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet, 1999, 353, 1930-1933.
  • [19] Phillips M., Herrera J., Krishnan S., Zain M., Greenberg J. and Cataneo R.N.: Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B, 1999, 729, 75-88.
  • [20] Phillips M., Cataneo R.N., Ditko B.A., Fisher P., Greenberg J. and Gunawardena R.: Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treatm., 2006, 99, 19-21.
  • [21] Filipiak W., Sponring A., Mikoviny T., Ager C., Schubert J. and Miekisch W.: Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell. Int., 2008, 8(17), 1-11.
  • [22] Teshima N., Li J., Toda K. and Dasgupta P. K.: Determination of acetone in breath. Anal. Chim. Acta, 2005, 535, 189-199.
  • [23] Cailleux A., Cogny M. and Allain P.: Blood isoprene concentrations in humans and in some animal species. Biochem. Med. Metabol. Biol., 1992, 47(2), 157-160.
  • [24] Kinter M.: Analytical technologies for lipid oxidation products analysis. J. Chromatogr. B, 1995, 671, 223-236.
  • [25] Buszewski B., Ulanowska A., Ligor T., Denderz N. and Amann A.: Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed. Chromatogr., 2009, 23, 551-556.
  • [26] Deng C., Zhang J., Yu X., Zhang W. and Zhang X.: Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B, 2004, 810, 269-275.
  • [27] Hyspler R., Crhova S., Gasparic J., Zadak Z., Cizkova M. and Balasova V.: Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B, 2000, 739, 183-190.
  • [28] Schfller C., Molin S. and Wilkins K.: Volatile metabolites from some Gram-negative bacteria. Chemosphere, 1997, 35, 1487-1495.
  • [29] Lirk P., Bodrogi F. and Rieder J.: Medical applications of proton transfer reaction-mass spectrometry:ambient air monitoring and breath analysis. Int. J. Mass. Spectrom., 2004, 239, 221-226.
  • [30] Lindinger W., Hansel A. and Jordan A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS). Medical applications, food control and environmental research. Int. J. Mass. Spectrom. Ion Processes, 1998, 173, 191-241.
  • [31] Karl T., Prazeller P., Mayr D., Jordan A., Rieder J., Fall R. and Lindinger W.: Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J. Appl. Physiol., 2001, 91, 762-770.
  • [32] Jordan A., Hansel A., Holzinger R. and Lindinger W.: Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton-transfer reaction mass spectrometry (PTR-MS). Int. J. Mass Spectrom. Ion Processes, 1995, 148, L1-L3.
  • [33] Spanel P., Rolfe P., Rajant B. and Smith D.: The selected ion flow tube (SIFT) - a novel technique for biological monitoring. Ann. Occup. Hyg., 1996, 40(6), 615- 626.
  • [34] Spanel P. and Smith D.: Quantitative selected ion flow tube mass spectrometry: The influence of ionic diffusion and mass discrimination. J. Amer. Soc. Mass Spectrom., 2001, 12, 863-872.
  • [35] Spanel P., Davies S. and Smith D.: Quantification of ammonia in human breath by the selected ion flow tube analytical method using H3O+ and O2 + precursor ions. Rapid Commun. Mass Spectrom., 1998, 12, 763-766.
  • [36] Baumbach J.I.: Process analysis using ion mobility spectrometry. Anal. Bioanal. Chem., 2006, 384, 1059-1070.
  • [37] Ulanowska A., Ligor M., Amann A. and Buszewski B.: Determination of volatile organic compounds in exhaled breath by ion mobility spectrometry. Chem. Anal., 2008, 53, 953 -965.
  • [38] Ruzsanyi V., Baumbach J.I., Sielemann S., Litterst P., Westhoff M. and Freitag L.: Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J. Chromatogr. A, 2005, 1084, 145-151.
  • [39] Ruzsanyi V. and Baumbach J.I.: Analysis of human breath using IMS. IJIMS, 2005, 8, 5-8.
  • [40] Guilbault G.G., Pallschi G. and Lubrano G.: Non-invasive biosensors in clinical analysis. Biosens. Bioelectron., 1995, 10, 379-392.
  • [41] Gardner J.W., Shin H.W. and Hines E.L.: An electronic nose system to diagnose illness. Sens. Actuators B, 2000, 70, 19-24.
  • [42] Wardencki W., Biernacka P., Chmiel T. and Dymarski T.: Instrumental techniques used for assessment of food quality. Proc. ECOpole, 2009, 3(2), 273-279.
  • [43] Shi-Hui S., Yuan-Jin X., Li-Hua N. and Shou-Zhuo Y.: Bulk acoustic wave sensor for investigating hemorheological characteristics of plasma and its coagulation, J. Biochem. Biophys. Methods, 1996, 31(3-4), 135-143.
  • [44] Horrillo M.C., Fernandez M.J., Fontecha J.L., Sayago I., Garcıa M., Aleixandre M., Santos J.P., Ares L., Gutierrez J., Gracia I. and Cane C.: Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings: Thin Solid Films, 2004, 467, 234- 238.
  • [45] Aathithan S., Plant J.C., Chaudry A.N. and French G.L.: Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors. J. Clin. Microbiol., 2001, 39(7), 2590-2593.
  • [46] Ehrmann S., Jungst J., Goschnick J. and Everhard D.: Application of a gas sensor microarray to human breath analysis. Sens. Actuators, B, 2000, 65, 247-249.
  • [47] Cheng Z.J., Warwick G., Yates D.H. and Thomas P.S.: An electronic nose in the discrimination of breath from smokers and non-smokers: a model for toxin exposure. J. Breath Res., 2009, 3, 1-5.
  • [48] Dragonieri S., Schot R., Mertens B.J.A., Le Cessie S., Gauw S.A. and Spanevello A.: An electronic nose in the discrimination of patients with asthma and controls. J. Allergy. Clin. Immunol., 2007, 120(4), 856-862.
  • [49] Walker B.D., Walker J.C., Cavnar P.J., Taylor J.L., Pickel D.H. and Hall S.B.: Naturalistic quantification of canine olfactory sensitivity. Appl. Animal Behav. Sci., 2006, 97, 241-254.
  • [50] Williams H. and Pembroke A.: Sniffer dogs in the melanoma clinic? Lancet, 1989, 1, 734.
  • [51] Poli D., Carbognani P., Corradi M., Goldoni M., Acampa O., Balbi B., Bianchi L., Rusca M. and Mutti A.: Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Resp. Res., 2005, 6(71), 1-10.
  • [52] Mills G.A. and Walker V.: Headspace solid-phase microextraction profiling of volatile compounds in urine: application to metabolic investigations. J. Chromatogr. B, 2001, 753, 259-268.
  • [53] Blount B.C., Kobelski R.J., McElprang D.O., Ashley D.L., Morrow J.C., Chambers D.M., et al: Quantification of 31 volatile organic compounds in whole blood using solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B, 2006, 832, 292-301.
  • [54] Zhang Z.M., Cai J.J., Ruan G.H. and Li G.K.: The study of fingerprint characteristics of the emanations from human arm skin using the original sampling system by SPME-GC/MS. J. Chromatogr. B, 2005, 822, 244-252.
  • [55] Horvath G., Järverud G.K., Järverud S. and Horváth I.: Human ovarian carcinomas detected by specific odor. Integr. Cancer Ther., 2008, 7(2), 76-80.
  • [56] Willis C.M., Church S.M., Guest C.M., Cook W.A., McCarthy N., Bransbury A.J. et al: Olfactory detection of human bladder cancer by dogs: proof of principle study. BMJ, 2004, 329, 712-715.
  • [57] McCulloch M., Jezierski T., Broffman M., Hubbard A., Turner K. and Janecki T.: Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr. Cancer Ther., 2006, 5(1), 1-10.
  • [58] Church J. and Williams H.: Another sniffer dog for the clinic? Lancet, 2001, 358, 930.
  • [59] Pickel D., Manucy G.P., Walker D.B., Hall S.B. and Walker J.C.: Evidence for canine olfactory detection of melanoma. Appl. Animal Behav. Sci., 2004, 89, 107-116.
  • [60] Jezierski T.: Zmysł węchu psów i jego praktyczne wykorzystanie. Polska Akademia Nauk. Instytut Genetyki i Hodowli Zwierząt, Jastrzębiec 2008.
  • [61] Thompson M., Ellison S.L.R. and Wood R.: Harmonised guidelines for single laboratory validation of method of analysis. Pure Appl. Chem., 2002, 74(50), 835-855.
  • [62] Michel M. and Buszewski B.: Isolation, determination and sorption modeling of xenobiotics in plant materials, Polish J. Environ. Stud., 2008, 17(3), 305-319.
  • [63] Vander H.Y., Nijhuis A., Verbeke J.S., Vandeginste B.G.M. and Massart D.L.: Guidance for rubustness/ruggedness test in method validation. J. Pharm. Biomed. Anal., 2001, 24, 723-753.
  • [64] Jhanf J., Chang C.C., Fink D.J. and Kroll M.H.: Evaluation of linearity in clinical Laboratory. Arch. Pathol. Lab. Med., 2004, 128, 44-48.
  • [65] Miller J.N. and Miller J.C.: Statistic and Chemometrics for Analytical Chemistry. Peason, Practice Hall, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0030-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.