PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article reviews the influence of porosity and pore sizes of titanium and titanium alloys, used as orthopaedic materials, on bioactivity and mechanical properties of the porous structures. The optimal features of porous titanium scaffolds allow the reconstruction and regeneration of bone tissue in load-bearing applications.
Słowa kluczowe
Rocznik
Strony
20--30
Opis fizyczny
Bibliogr. 62 poz., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Gu Y.W., Yong M.S., Tay B.Y., Lim C.S.: Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Materials Science and Engineering, vol. C 29 (2009), 1515-1520.
  • 2. Froimson M.I., Garino J., Machenaud A., Vidalain J.P.: Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem. The Journal of Arthroplasty, 22, no.1 (2007), 1-7.
  • 3. Spoerke E.D., Murray N.G., Li H., Brinson L.C., Dunand D.C., Stupp S.I.: A bioactive titanium foam scaffold for bone repair. Acta Biomaterialia, 1 (2005), 523-533.
  • 4. Karageorgiou V., Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26 (2005), 5474-5491.
  • 5. Li J.P., Habibovic P., Doel M., Wilson C.E., Wijn J.R., Blitterswijk C.A., Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28 (2007), 2810-2820.
  • 6. Alvarez K., Hyun S.K., Nakano T., Umakoshi Y., Nakajima H.: In vivo osteocompatibility of Lotus-type porous nickel-free stainless steel in rats. Mater. Sci. Eng. C, 29 (2009), 1182-1190.
  • 7. Galante J., Rostoker W.: Fiber metal composities in the fixation of skeletal prosthesis. J. Biomed. Mater. Res., 4 (1973), 43-61.
  • 8. Galante J., Rostoker W., Lueck R.: Sintered fibre metal composites as a basis for attachment of implants to bone, J. Bone. J Surg., 53, A(1) (1971), 101-114.
  • 9. Davis N.G., Teisen J., Schuh C., Dunand D.C.: Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J. Mater. Res., 16 (2001) 1508-1539.
  • 10. Li J.P., Li S.H., Van Blitterswijk C.A., De Groot K.: A novel porous Ti6Al4V: characterization and cell attachment. J. Biomed. Mater. Res., 73A (2005), 223-233.
  • 11. Miyao R., Omori M., Watari F., Yokoyama A., Matsumo H., Hirai T., Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall., 47 (2000), 1239-1242.
  • 12. Groza J.R., Zavaliangos A.: Sintering activation by external electrical field. Mater Sci. Eng. A., 287 (2000), 171-177.
  • 13. Charriere E., Lemaitre J., Zysset Ph.: Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials, 24 (2003), 809-817.
  • 14. Borisov A.A., De Luca L., Merzhanov A.: Self-propagating high-temperature synthesis. Combustion Science & Technology Book Series, vol.5, New York (2002).
  • 15. Lopez-Heredia M.A., Sohier J., Gaillard C., Quillard S., Dorget M., Layrolle P.: Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 20 (2008), 2608-2615.
  • 16. Li J.P., Wijn J.R., Blitterswijk C.A., Groot K.: Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27 (2006), 1223-1235.
  • 17. Ravelingien M., Hervent A-S., Mullens S., Luyten J., Vervaet Ch., Remon J.P.: Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Applied Surface Science, 256 (2010), 3693-3697.
  • 18. Mullen L., Stamp R.C., Brooks W.K., Jones E., Sutcliffe C.J.: Selective laser melting: A regular unit approach for the manufacture of porous titanium, bone ingrowth constructs, suitable for orthopaedic applications. J. Biomed. Mater. Res. B 2009 in press .
  • 19. Lee J.-H., Kim H-E., Koh Y-H.: Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters 63 (2009), 1995-1998.
  • 20. Vasconcellos L.M., Oliveira M.V., Graca M.L., Vasconcellos L.G.O., Carvalho Y.R., Cairo C.A.A.: Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res., 11, (3), (2008), 275-280.
  • 21. Shen H., Oppenheimer S.M., Dunand D.C., Brinson L.C.: Numerical Modeling of Pore Size and Distribution in Foamed Titanium. Mechanics of Mat. 38, (8-10) (2006), 933-944.
  • 22. Bram M., Schiefer H., Bogdanski D., Koller M., Buchkremere H.P., Stover D.: Implant surgery: How bone bonds to PM titanium. Metal Powder R., (2006), 26-31.
  • 23. St-Pierre J-P., Gauthier M., Lefebvre L-P., Tabrizian M.: Three-dimensional growth of differentiating MC3T3-E1. Biomaterials, 26 (2005), 7319-7328.
  • 24. Cachinho S.C.P., Correia R.N.: Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J. Mater. Sci: Mater. Med.,19 (2008) 451-457.
  • 25. Liao S., Chan C.K., Ramakrishna S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. and Eng., C 28 (2008) 1189-1202.
  • 26. Zhang E., Zou Ch.: Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Charakterization and in vivo evaluation. Acta Biomaterialia, 5 (2009), 1732-1741.
  • 27. Hayakawa T., Takahashi K., Okada H., Yoshinari M., Hara H., Mochizuki Ch., Yamamoto H., Sato M.: Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. J. Mater. Sci: Mater. Med., 19 (2008), 2087-2096.
  • 28. Fujibayashi S., Neo M., Kim H-M., Kokubo T., Nakamura T.: Osteoinduction of porous bioactive titanium metal. Biomaterials, 25 (2004) 443-450.
  • 29. Muller U., Imwinkelried T., Horst M., Sievers M., Graf-Hausner U.: Do human osteoblasts grow into open-porous titanium? European Cells and Mat., 11 (2006) 8-15.
  • 30. Zhang Q., Leng Y., Xin R.: A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials, 26 (2005), 2857-2865.
  • 31. Shen H., Li H., Brinson L.C.: Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopaedic applications. Mechanics and Materials, 40 (2008), 708-720.
  • 32. Li Ch., Zhu Z.: Dynamic Young’s modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. J. Porous Mater., 13 (2006) 21-26.
  • 33. Ryan G.E., Pandit A.S., Apatsidis D.P.: Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 29 (2008), 3625-3635.
  • 34. Zhao J., Lu X., Weng J.: Macroporous Ti-based composite scaffold prepared by polymer impregnating method with calcium phosphate coatings. Mater. Lett., 62 (2008), 2921-2924.
  • 35. Chen X-B., Li Y-C., Hodgson P.D., Wen C.: The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 5 (2009), 2290-2302.
  • 36. Ahmad S., Muhamad N., Muchtar A., Sahari J., Jamaludin K.R, Ibrahim M.H., Mohamad Nor N.H., Murtadhahadi I.: Producing of titanium foam using titanium alloy (Al3Ti) by slurry method. Brunei Int. Conf. of Eng. And Techn. (BICET) 3-4.11.2008 Brunei (2008).
  • 37. Esen Z., Bor S.: Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56 (2007), 341-344.
  • 38. Kotan G., Bor A.S.: Production and Characterization of High Porosity Ti-6A-4V Foam by Space Holder Technique in Powder Metallurgy. Turkish J. Eng. Env. Sci. 31 (2007), 149-156.
  • 39. Xiong J., Li Y., Wang X., Hodgson P., Wen C.: Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Acta Biomaterialia, 4 (2008), 1963-1968.
  • 40. Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials, 25 (2004), 4393-4403.
  • 41. Liu X., Chu P.K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, 47 (2004), 49-121.
  • 42. Wen C.E., Xu W., Hu W.Y., Hodgson P.D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia, 3 (2007), 403-410.
  • 43. Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. J. Mater Sci., 41 (2006, 8138-8143.
  • 44. Wang C.X., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedence spectroscopy study. Biomaterials, 24 (18) (2003), 3069-3077.
  • 45. Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Mater. Sci., 10 (1) (2010) 19-28.
  • 46. Schmidt C., Kaspar D., Sarkar M.R., Claes L.E., Ignatius A.A.: A scanning electron microscopy study of human osteoblast morphology on five orthopaedic metals. J. Biomed. Mater. Res. (Appl. Biomaterials), 63 (2002), 252-261.
  • 47. Annaz B., Hing K.A., Kayser M., Buckland T., Di Silvo L.: Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. of Microscopy, 215 (2004), 100-110.
  • 48. Sun J., Han Y., Cui K.: Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface & Coatings Technology, 202 (2008) 4248-4256.
  • 49. Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surf .Sci., 206 (2003), 345-354.
  • 50. Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line:
  • 51. Jones J.R.: New trends in bioactive scaffolds: The importance of nanostructure. J European Cer. Soc., 29 (2009), 1275-1281.
  • 52. Sridhar T.M., Eliaz N., Mudali U.K., Ray B.: Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corr. Rev., 20(4-5) (2002), 255-293.
  • 53. Sobieszczyk S.: Surface modifications of Ti and Ti alloys. Advances in Materials Science, 10(1) (2010) 29-42.
  • 54. Chen X.V., Nouri A., Li Y.C., Lin J.G., Hodgson P.D., Wen C.E.: Effect of surface roughness of Ti, Zr and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng, 101 (2008), 378-387.
  • 55. Chen X.B., Li Y.C., Hodgson P.D., Wen C.E.: Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng., C29 (2009), 165-171.
  • 56. Wang X.J., Li Y.C., Lin J.G., Hodgson P.D., Wen C.E.: Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy. J. Mater. Res., 23 (2008), 1682-1688.
  • 57. Gibson L.J.: Biomechanics of cellular solids. J Biomechanics, 38 (3) (2005) 377-399.
  • 58. Zhao C.Y., Zhu X.D., Yuan T., Fan H.S., Zhang X.D.: Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater. Sci. and Eng., C 30 (2010), 98-104.
  • 59. Wen C.E., Yamada Y., Shimojima K., Chino Y., Asahina T., Mabuchi M.: Processing and mechanical properties of autogenous titanium implant materials. J Mater. Sci.: Mater in Medicine, vol.13(4) (2002), 397-401.
  • 60. Oh I-H., Nomura N., Masahashi N., Hanada S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 49(12) (2003), 1197-1202.
  • 61. Niemeyer T.C., Grandini C.R., Pinto L.M.C., Angelo A.C.D., Schneider S.G.: Corrosion behaviour of Ti-13Nb-13Zr alloy used as a biomaterial. J. Alloys and Comp., 476 (2009), 172-175.
  • 62. Lacroix D., Chateau A., Ginebra M-P., Planell J.A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials, 27 (2006), 5326-5334.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0028-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.