PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface modifications of ti and its alloys

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article reviews the various surface modification techniques pertaining to titanium and titanium alloys including physical treatment, mechanical treatment, and chemical and electrochemical treatment. The proper surface modification expands the use of titanium and its alloys in the biomedical field for long-term implants retaining the excellent properties of substrate material and improving the specific surface properties required by clinical applications.
Rocznik
Strony
29--42
Opis fizyczny
Bibliogr. 94 poz., rys., fot., tab.
Twórcy
  • Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-952 Gdansk, Poland
Bibliografia
  • 1. Liu X., Chu P.K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, vol.47 (2004) 49-121.
  • 2. Molitor P., Barron V., Young T.: Surface treatment of titanium for adhesive and adhesives. Vol. 21 (2) (2001) 129-136.
  • 3. Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen T.P., Pilet P., Daculsi G.: In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials 26 (2005) 157-165.
  • 4. Liang C.Y., Yang X.J., Wei Q., Cui Z.D.: Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium. Applied Surface Science 255 (2008) 515-518.
  • 5. Gbureck U., Masten A., Probst J., Thull R.: Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Materials Science and Engineering C 23 (2003) 461-465.
  • 6. Hryniewicz T., Rokicki R., Rokosz K.: Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface & Coatings Technology 203 (2009) 1508-1515.
  • 7. Strnad J., Strnad Z., Sestak J.: Physico-chemical properties and healing capacity of potentially bioactive titanium surface. Journal of Thermal Analysis and Calorimetry, vol. 88 (3) (2007) 775-779.
  • 8. Mohammadi Z., Ziaei-Moayyed A.A., Sheikh-Mehdi Mesgar A.: Grit blasting of Ti-6Al-4V alloy: Optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings. Journal of Materials Processing Technology 194 (2007) 15-23.
  • 9. Lu X., Zhao Z., Leng Y.: Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science and Engineering C 27 (2007) 700-708.
  • 10. Yousefpour M., Afshar A., Chen J., Xingdong Z.: Bioactive layer formation on alkaline-acid treated titanium in simulated body fluid. Materials and Design 28 (2007) 2154-2159.
  • 11. Pattanayak D.K., Kawai T., Matsushita T., Takadama H., Nakamura T., Kokubo T.: Effect of HCl concentrations on apatie-forming ability of NaOH-HCl – and heat-treated titanium metal. J Materials Science: Materials in Medicine (2009) published on-line: http://www.springerlink.com/content/m7l108m885m83056/
  • 12. Assis S.L., Costa I.: The Effect of Hydrogen Peroxide on the Electrochemical Behaviour of Ti-13Nb-13Zr Alloy in Hanks’ Solution. Materials Research 9 (4) (2006) 425-429.
  • 13. Han J.Y., Zu Z.T., Zhou L.: Hydroxyapatite/titania composite bioactivity coating processed by sol-gel method. Applied Surface Science 255 (2008) 455-458.
  • 14. Nguyen H.Q., Deporter D.A., Pilliar R.M., Valiquette N., Yakubovich R.: The effect of sol-gel formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25(5) (2004) 865-876.
  • 15. Wierzchoń T., Czarnowska E., Krupa D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Oficyna Wyd. Politechniki Warszawskiej. Warszawa 2004.
  • 16. Wilks R.G., Santos E., Kurmaev E.Z., Yablonskikh M.V., Moewes A., Kuromoto N.K., Soares G.A.: Characterization of oxide layers fordem on electrochemically treated Ti by Rusing soft X-ray absorption measurements. J Electron Spectroscopy and Related Phenomena 169 (2009) 46-50.
  • 17. Diamanti M.V., Pedeferri M.P.: Effect of anodic oxidation parameters on the titanium oxides formation. Corrosion Science 49 (2007) 939-948.
  • 18. Cui X., Kim H.-M., Kawashita M., Wang L., Xiong T., Kokubo T., Nakamura T.: Preparation of bioactive titania films on titanium metal via anodic oxidation. Dental materials 25 (2009) 80-86.
  • 19. Bauer S., Park J., Mark K., Schmuki P.: Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia 4 (2008) 1576-1582.
  • 20. Goto T.: Surface coating technology for biomaterials – morphology and nono-structure control. International Congress Series 1284 (2005) 248-256.
  • 21. Sevilla P., Aparicio C., Planell J.A., Gil F.J.: Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys and Compounds 439 (2007) 67-73.
  • 22. Trommer R.M., Santos L.A., Bergmann C.P.: Alternative technique for hydroxyapatite coatings. Surface & Coatings Technology 201 (2007) 9587-9593.
  • 23. Kim D.S., Han S.J., Kwak S.-Y.: Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid and Interface Science 316 (2007) 85-91.
  • 24. Baram N., Starosvetsky D., Starosvetsky J., Epshtein M., Armon R., Ein-Eli Y.: Enhanced inactivation of E.coli bacteria using immobilized porous TiO2 photoelectrocatalysis. Electrochimica Acta 54 (2009) 3381-3386.
  • 25. Lewis G., McVay B.: Effect of Thermal Spray Process for Deposition Hydroxyapatite Coating on a Titanium Alloy on its Fatigue Performance. 17th Southern Biomedical Engineering Conf (1998) 119.
  • 26. Gledhill H.C., Turner I.G., Doyle C.: In vitro dissolution behavior of two morphologically different thermally sprayed hydroxyapatite coatings. Biomaterials 22 (2001) 695-700.
  • 27. Li H., Khor K.A.: Characteristics of the nanostructures in thermal sprayed hydroxyapatite coatings and their influence on coating properties. Surface & Coatings Technology 201 (2006) 2147-2154.
  • 28. Lima R.S., Khor K.A., Li H., Cheang P., Marple B.R.: HVOF spraying on nanostructured hydroxyapatite for biomedical applications. Materials Science and Engineering A 396 (2005) 181-187.
  • 29. Goana M., Lima R.S., Marple B.R.: Influence of particle temperature and velocity on the microstructure and mechanical behavior of high velocity oxy-fuel (HVOF) – sprayed nanostructured titania coatings. J Materials Processing Technology 198 (2008) 426-435.
  • 30. Hoseini M., Jedenmalm A., Boldizar A.: Tribological investigation of coatings for artificial joints. Wear 264 (2008) 958-966.
  • 31. Chiu S-M., Chen Z-S., Yang K-Y., Hsu Y-L., Gan D.: Photocatalytic activity of moped TiO2 coatings prepared by sputtering deposition. J Materials Processing Technology 192-193 (2007) 60-67.
  • 32. Krupa D., Baszkiewicz J., Rajchel B., Barcz A., Sobczak J.W., Biliński A., Borowski T.: Effect of calcium-ion implantation on the corrosion resistance and bioactivity of the Ti6Al4V Allom. Vacuum 81 (2007) 1310-1313.
  • 33. Xie Y., Liu X., Huang A., Ding Ch., Chu P.K.: Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 26 (2005) 6129-6135.
  • 34. Jo Y.J., Lee C.M., Jang H.S., Lee N.S., Suk J.-H., Lee W.H.: Mechanical properties of fully porous and porous-surfaced Ti-6Al-4V implants fabricated by electro-discharge-sintering. J Materials Processing Technology 194 (2007) 121-125.
  • 35. An Y.B., Lee W.H.: Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Materials Chemistry and Physics 95 (2006) 242-247.
  • 36. Lausmaa J. in Brunette D.M., Tengvall P., Textor M., Thomsen P. (Eds.): Titanium in Medicine, Springer, Berlin (2001) 231-266.
  • 37. Albrektsson T., Wennerberg A.: Part 1 – review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International J Prosthodontosis. 17(5) (2004) 536-543.
  • 38. Cook S.D., Thomas K.A., Kay J.F., Jarcho M.: Hydroxyapatite-coated titanium for orthopedic implant applications. Clinical Orthopaedic and Related Research (1988) 225-243.
  • 39. Ronald H.J., Ellingsen J.E.: Effect of micro-roughness produced by TiO2 blasting-tensile testing of bone attachment by using coin-shaped implants. Biomaterials 23 (2002) 4211-4219.
  • 40. Fini M., Savarino L., Aldini N.N., Martini L., Giaveresi G., Rizzi G., Martini D., Ruggeri A., Giunti A., Giardino R.: Biomechanical and histomorphometric investigation on two morphologically differing titanium surfaces with and without frluorohydroxyapatite coating: an experimental study in sheep tibiae. Biomaterials 24 (2003) 3183-3192.
  • 41. Andrade M.C., Bastos I.N., Filgueiras M.R.T., Ogasawara T.: Behavior of hydroxyapatite coated titanium as a function of NaOH pretreatment. Revista Cientifica Internacional, 1(3) (2008) 1-16.
  • 42. Conforto E., Caillard D., Muller L., Muller F.A.: The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants. Acta Biomaterialia 4 (2008) 1934-1943.
  • 43. Ho W-F., Lai Ch-H., Hsu H-Ch., Wu S-Ch.: Surface modification of low-modulus Ti-7.5Mo Allom treated with aqueous NaOH. Surface & Coatings Technology 203 (2009) 3142-3150.
  • 44. Kim H.M., Miyaji F., Kokubo T., Nakamura T.: Preparation of bioactive Ti and its alloys via Simple chemical surface treatment. J Biomedical Materials Research, 32 (3) (1996) 409-417.
  • 45. Lu X., Leng Y., Zhang X., Xu J., Qin L., Chan Ch-W.: Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials 26 (2005) 1793-1801.
  • 46. Nebe J.B., Muller L., Luthen F., Ewald A., Bergemann C., Conforto E., Muller F.A.: Osteoblast response to biomimetically altered titanium surfaces. Acta Biomaterialia 4 (2008) 1985-1995.
  • 47. Takeuchi M., Abe Y., Yoshida Y., Nakayama Y., Okazaki M., Akagawa Y.: Acid pretreatment of titanium implants. Biomaterials 24 (10) (2003) 1821-1827.
  • 48. Tas A.C.: Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions AT 90oC. J Americal Ceramics Society 90(8) (2007) 2358-2362.
  • 49. Shukla A.K., Balasubramaniam R.: Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid. Corrosion Science 48 (2006) 1696-1720.
  • 50. Oh S-H., Finones R.R., Daraio C., Chen L-H., Jin S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26 (2005) 4938-4943.
  • 51. Sobieszczyk S., Zieliński A.: Coatings in Arthroplasty. Advances in Materials Science, vol. 8, no 4 (2008) 35-54.
  • 52. Li P., Groot K.: A calcium phosphate formation within sol-gel-prepared titania in vitro and in vivo. J Biomedical Science Research 27 (1993) 1495-1500.
  • 53. Wen C.E., Xu W., Hu W.Y., Hodgson P.D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia 3 (2007) 403-410.
  • 54. Ben-Nissan B., Milev A., Vago R.: Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25 (2004) 4971-4975.
  • 55. Maiyalagan T., Viswanathan B., Varadaraju U.V.: Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method. Bull. Mater. Sci., vol.29 (7) (2006) 705-708.
  • 56. Kim H-W., Koh Y-H., Li L-H., Lee S., Kim H-E.: Hydroxyapatite coating on titanium substrate with titania Buffet layer processed by sol-gel method Biomaterials 25 (2004) 2533-2538.
  • 57. Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line: http://www.springerlink.com/content/793488162u28q61t/
  • 58. Narayanan R., Seshadri S.K.: Phosphoric acid anodization of Ti-6Al-4V – Structural and corrosion aspects. Corrosion Science 49 (2007) 542-558.
  • 59. Oh S., Jin S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C 26 (2006) 1301-1306.
  • 60. Wei D., Zhou Y., Yang Ch.: Characteristic, cell response and apatite-induction ability of microarc oxidized TiO2-based coating containing P on Ti6Al4V before and after chemical-treatment and dehydration. Ceramics International 35 (2009) 2545-2554.
  • 61. Sun J., Han Y., Huang X.: Hydroxyaptite coatings prepared by micro-arc oxidation in Ca- an P-containing electrolyte. Surface & Coatings Technology 201 (2007) 5655-5658.
  • 62. Wei D., Zhou Y., Jia D., Wang J.: Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca P ions. Surface & Coatings Technology 201 (2007) 8723-8729.
  • 63. Park I.S., Woo T.G., Jeon W.Y., Park H.H., Lee M.H., Bae T.S., Seol K.W.: Surface characteristics of titanium anodized in the four different types of electrolyte. Electrochimica Acta 53 (2007) 863-870.
  • 64. Nolan M.G.: Design and commissioning of an off-line APCVD coater to deposit titanium dioxide self-cleaning films. SIMTech technical reports, 9 (2) (2008) 75-80.
  • 65. Romanuja N., Levy R.A., Dharmadhikari S.N., Ramos E., Pearce W., Menasian S.C., Schamberger P.C., Collins C.C.: Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3. Materials Letters 57(2) (2002) 261-269.
  • 66. Cruz N.C., Rangel E.C., Wang J., Trasferetti B.C., Daranzo C.U., Castro S.G., Morges M.A.B.: Properties of titanium oxide films obtained by PECVD. Surface & Coating Technology 126 (2-3) (2000) 123-130.
  • 67. Jóźwik K., Karczemska A.: The new generation Ti6Al4V artificial heart valve with nanocrystalline diamond coating on the ring and with Derlin disc after long-term mechanical fatigue examination. Diamond & Related Materials 16 (2007) 1004-1009.
  • 68. Kugler C., Fink M., Laimer J., Stori H.: Dynamics of pulsed d.c. discharges used for PACVD – effect of additional high voltage pulses. Surface & Coatings Technology 142-144 (2001) 424-428.
  • 69. Tosatti S., Michel R., Textor M., Spencer N.D.: Self-assembled monolayers of dodecyl and hydroxyl-dodecyl phosphates on both smooth and rough titanium and titanium oxide surfaces. Langmuir 18(9) (2002) 3537-3548.
  • 70. Zhang Z.H., Feng Ch.L.: Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride. Applied Surface Science 253 (22) (2007) 8915-8922.
  • 71. Ishikawa K., Suzuki T., Kitamura Y., Tobe S.: Corrosion resistance of thermal sprayed titanium coatings in chloride solution. J Thermal Spray Technology 8(2) (2007) 273-278.
  • 72. Liu X., Poon R.W.Y., Kwok S.C.H., Chu P.K., Ding Ch.: Plasma surface modification of titanium for hard tissue replacements. Surface & Coatings Technology 186 (2004) 227-233.
  • 73. Nakashima Y., Hayashi K., Inadome T., Uenoyama K., Hara T., Kanemaru T., Sugioka Y., Noda I.: Hydroxyapatite-coating on titanium arc sprayed titanium implants. J Biomedical Materials Research Part A 35(3) (1998) 287-298.
  • 74. Rajesekaran B., Ganesh S.R.S., Joshi S., Sundararajan G.: Performance of plasma sprayed and detonation gun sprayed Cu-Ni-In coatings on Ti-6Al-4V under plain fatigue and fretting fatigue loading. Materials Science & Engineering 479 (1-2) (2008) 83-92.
  • 75. Bray M., Cockburn A., O’Neill W.: The Laser-assisted Cold Spray process and deposition charactrisation. Surface & Coatings Technology 203 (19) (2009) 2851-2857.
  • 76. Chiu Ch-Y., Hsu H-Ch., Tuan W-H.: Effect of zirconia addition on the microstructural evolution of Poros hydroxyapatite. Ceramics International 33 (2007) 715-718.
  • 77. Wiklund U., Larsson M.: Low friction PVD titanium-carbon coatings. Wear 241 (2) 234-238.
  • 78. Giolli C., Borgioli F., Credi A., et.al.: Characterization of TiO2 coatings prepared by a modified electric arc-physical vapor deposition system. Surface & Coatings Technology 202 (2007) 13-22.
  • 79. Sobiecki J.R., Wierzchoń T.: Structure and properties of plasma carbonitrided Ti-6Al-2Cr-2Mo Alloy. Surface & Coatings Technology 200 (14-15) 4363-4367.
  • 80. Moller W., Mukherjee S.: Plasma-based ion implantation. Current Science 83 (3) (2002) 237-253.
  • 81. Zhao X., Liu X., Ding Ch., Chu P.K.: Effects of plasma treatment on bioactivity of TiO2 coatings. Surface & Coatings Technology 201 (2007) 6878-6881.
  • 82. Valencia-Alvarado R., Piedad-Beneitez A., Lopez-Callejas R., Barocio S.R., Mercado-Cabrera A., Pena-Equiluz R., Munoz-Castro A.E., Rosa-Vazquez J.: Oxygen implantation and diffusion in pure titanium by an rf inductively coupled plasma. Vacuum 83 (Supp 1) (2009) 264-267.
  • 83. Gurrappa I., Monara D., Gerlach J.W., Mandl S., Rauschenbach B.: Influence of nitrogen implantation on the high temperature oxidation of titanium-based alloys. Surface & Coatings Technology 201 (6) (2006) 3536-3546.
  • 84. Johansson C.B., Lausmaa J., Rastlund T., Thomsen P.: Commercially pure titanium and Ti6Al4V implants with an without nitrogen-ion-implantation: surface characterization and quantitative studies in rabbit cortical bone. J Materials Science in Medicine 4 (2) (1993) 132-141.
  • 85. Varela M., Garcia J.A., Rodriquez R., Caceres D., Ballesteros C.: Microstructure changes induced by low-energy high-temperature nitrogen ion implantation on vanadium-titanium alloys. Nanotechnology 3 (2003) 207-210.
  • 86. Pham M.T., Matz W., Reuther H., Richter E., Steiner G.: Hydroxyapatite nucleation on Na ion implanted Ti surfaces. J Materials Science Letters 19 (2000) 1029-1031.
  • 87. Cai K.Y.: Surface modification of titanium films with sodium ion implantation: surface properties and protein adsorption. Acta Metallurgica Sinica 20 (2) (2007) 148-156.
  • 88. Asami K., Ohtsu N., Saito K., Hanawa T.: CaTiO3 films sputter-deposited under simultaneous Ti-ion implantation on Ti-substrate. Surface & Coatings Technology 200 (2005) 1005-1008.
  • 89. Krupa D., Baszkiewicz J., Sobczak J.W., Biliński A., Barcz A., Rajchel B.: Influence of anodic oxidation on the bioactivity and corrosion resistance of phosphorous-ion implanted titanium. Vacuum 70 (2003) 109-113.
  • 90. Wan Y.Z., Huang Y., He F., Wang Y.L., Zhao Z.G., Ding H.F.: Effect of Mg ion implantation on calcium phosphate formation on titanium. Surface & Coatings Technology 201 (2006) 2904-2909.
  • 91. Krupa D., Baszkiewicz J., Kozubowski J.A., Barcz A., Sobczak J.W., Biliński A., Lewandowska-Szumiel M., Rajchel B.: Effect of dual Ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials 26 (2005) 2847-2856.
  • 92. Krupa D., Baszkiewicz J., Kozubowski J., Barcz A., Sobczak J., Biliński A., Rajchel B.: The influence of calcium and/Or phosphorous ion implantation on the structure and corrosion resistance of titanium. Vacuum 63 (2001) 715-719.
  • 93. Hanawa T., Nakajima S., Yamamoto A., Suzuki Y., Iwaki M.: Control of platelet and cell adhesion to titanium with helium ion implantation. European Cells and Materials 6 (Supp 1) (2003) 36.
  • 94. Ma X., Sun Y., Wu P., Xia L., Yukimura K.: Structure of titanium films implanted with carbon by plasma-based ion implantation. Surface & Coatings Technology 169-170 (2003) 375-378.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.