PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydroxyapatite coatings on porous ti and ti alloys

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deposition of hydroxyapatite coating on porous Ti and Ti alloys with electrochemical and biomimetic deposition approach is presented. The enhancement of phosphates deposition by well oriented and uniform titanium oxide nanotube array on the surface of titanium substrate is discussed.
Rocznik
Strony
19--28
Opis fizyczny
Bibliogr. 65 poz., rys., fot., tab.
Twórcy
  • Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, Gdansk University of Technology, 80-322 Gdansk, Poland
Bibliografia
  • 1. Dumbleton J., Manley M.T.: Hydroxyapatite-Coated Prostheses in Total Hip and Knee Arthroplasty. J. Bone Joint Surg. Am. 86 (2004) 2526-2540.
  • 2. Sobieszczyk S., Zieliński A.: Coatings in Arthroplasty. Advances in Materials Science, vol. 8, no 4 (2008) 35-54.
  • 3. Epinette J-A., Manley M.T.: Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty. Springer-Verlag, France (2004).
  • 4. Pichugin V.F., Surmenev R.A., Shesterikov E.V., Ryabtseva M.A., Eshenko E.V., Tverdokhlebov S.I., Prymak O., Epple M.: The preparation of calcium phosphate coatings on titanium and nickel-titanium by rf-magnetron-sputtered deposition: Composition, structure and micromechanical properties. Surface & Coatings Technology 202 (2008) 3913-3920.
  • 5. Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research B 249 (2006) 723-725.
  • 6. Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surface Science 206 (2003) 345-354.
  • 7. Yan L., Leng Y., Weng L-T.: Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials 24 (2003) 2585-2592.
  • 8. Man H.C., Chiu K.Y., Cheng F.T., Wong K.H.: Adhesion study on pulsed laser deposited hydroxyapatite coating on laser surface nitride titanium. Thin Solid Films 517 (2009) 5496-5501.
  • 9. Blalock T., Bai X., Rabiei A.: A study on microstructure and properties of calcium phosphate coatings processed using ion beam assisted deposition on heated substrates. Surface & Coatings Technology 201 (2007) 5850-5858.
  • 10. Xiao X.F., Liu R.F., Zheng Y.Z.: Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal-electrochemical method on titanium. Surface & Coatings Technology 200 (2006) 4406-4413.
  • 11. Yousefpour M., Afshar A., Chen J., Zhang X.: Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates. Materials Science and Engineering C 27 (2007) 1482-1486.
  • 12. Ben-Nissan B., Milev A., Vago R.: Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25 (2004) 4971-4975.
  • 13. Vaahtio M., Peltola T., Hentunen T., Ylanen H., Areva S., Wolke J., Salonen J.I.: The properties of biomimetically processed calcium phosphate on bioactive ceramics and their response on bone cells. J Mater Sci: Mater Med 17 (2006) 1113-1125.
  • 14. Jalota S., Bhaduri S., Bhaduri S.B., Tas A.C.: A protocol to develop crack-free biomimetic coatings on Ti6Al4V substrates. J. Mater. Res., 22 (6) (2007) 1593-1600.
  • 15. Wang Y., Tao J., Wang L., He P, Wang T.: HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. Trans. Nonferrous Met. Soc. China 18 (2008) 631-635.
  • 16. Kar A., Raja K.S., Misra M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface & Coatings Technology 201 (2006) 3723-3731.
  • 17. Oh S., Jin S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C 26 (2006) 1301-1306.
  • 18. Kim S.E., Lim J.H., Lee S. C., Nam S-C., Kang H-G., Choi J.: Anodically nanostructured titanium dioxides for implant applications. Electrochimica Acta 53 (2008) 4846-4851.
  • 19. Zhang L., Chen Y., Rodriguez J., Fenniri H., Webster T.: Biomimetic helical rosette nanotubes and nonocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int. Journal of Nanomedicine 3(3) (2008) 323-333.
  • 20. Li M., Xiao X., Liu R.: Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Applied Surface Science 255 (2008) 365-367.
  • 21. Maiyalagan T., Viswanathan B., Varadaraju U.V.: Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method. Bull. Mater. Sci., vol.29 (7) (2006) 705-708.
  • 22. Raja K.S., Misra M., Paramguru K.: Deposition of calcium phosphate coating on nanotubular anodized titanium. Materials Letters 59 (2005) 2137-2141.
  • 23. Yu X., Li Y., Wlodarski W., Kandasamy S., Kalantar-Zadeh K.: Fabrication of nanostructured TiO2 by anodization: A comparision between electrotyles and substrates. Sensors and Actuators B 130 (2008) 25-31.
  • 24. Lee J-H., Kim S-E., Kim Y-J., Chi Ch-S., Oh H-J.: Effects of microstructure of anodic titania on the formation of bioactive compounds. Materials Chemistry and Physics 98 (2006) 39-43.
  • 25. Zhang W., Li G., Li Y., Yu Z., Xi Z.: Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties. Trans. Nonferrous Met. Soc. China 17 (2007) 692-695.
  • 26. Berger S., Jakubka F., Schmuki P.: Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications 10 (2008) 1916-1919.
  • 27. Macak J.M., Schmuki P.: Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochemica Acta 52 (2006) 1258-1264.
  • 28. Raja K.S., Gandhi T., Misra M.: Effect of water kontent of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications 9 (2007) 1069-1076.
  • 29. Allam N.K., Grimes C.A.: Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Solar Energy Materials & Solar Cells 92 (2008) 1468-1475.
  • 30. Xiao X., Tian T., Liu R., She H.: Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment. Materials Chemistry and Physics 106 (2007) 27-32.
  • 31. Zhao J., Wang X., Chen R., Li L.: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications 134 (2005) 705-710.
  • 32. Oh S-H., Finones R.R., Daraio C., Chen L-H., Jin S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26 (2005) 4938-4943.
  • 33. Popat K.C., Leoni L., Grimes C.A., Desai T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28 (2007) 3188-3197.
  • 34. Macak J.M., Schmidt-Stein F., Schmuki P.: Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochemistry Communications 9 (2007) 1783-1787.
  • 35. Bestetti M., Franz S., Cuzzolin M., Arosio P., Cavallotti P.L.: Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions. Thin Solid Films 515 (2007) 5253-5258.
  • 36. Sieber I., Hildebrand H., Friedrich A., Schmuki P.: Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications 7 (2005) 97-100.
  • 37. Vega V., Cerdeira M.A., Prida V.M., Alberts D., Bordel N., Pereiro R., Mera F., Garcia S., Hernandez-Velez M., Vazquez M.: Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays. Journal of Non-Crystalline Solids 354 (2008) 5233-5235.
  • 38. Crawford G.A., Chawla N., Das K., Bose S., Bandyopadhyay A.: Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomaterialia 3 (2007) 359-367.
  • 39. Crawford G.A., Chawla N.: Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti. Scripta Materialia 60 (2009) 874-877.
  • 40. Zhao J., Wang X., Sun T., Li L.: Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. Journal of Alloys and Compounds 434-435 (2007) 792-795.
  • 41. Bauer S., Kleber S., Schmuki P.: TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications 8 (2006) 1321-1325.
  • 42. Macak J.M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P.: Current Opinion in Solid State and Materials Science 11 (2007) 3-18.
  • 43. Yang Y., Wang X., Li L.: Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization. Materials Science and Egnineering B 149 (2008) 58-62.
  • 44. Ghicov A., Tsuchiya H., Hahn R., Macak J.M., Munoz A.G., Schmuki P.: TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochemistry Communications 8 (2006) 528-532.
  • 45. Munoz A.G.: Semiconducting properties of self-organized TiO2 nanotubes. Electrochimica Acta 52 (2007) 4167-4176.
  • 46. Hokkanen B., Funk S., Burghaus U., Ghicov A., Schmuki P.: Adsorption kinetics of alkanes on TiO2 nanotubes array – structure – activity relationship. Surface Science 601 (2007) 4620-4628.
  • 47. Balaur E., Macak J.M., Taveira L., Schmuki P.: Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications 7 (2005) 1066-1070.
  • 48. Tsuchiya H., Macak J.M., Ghicov A., Tang Y.Ch., Fujimoto S., Niinomi M., Noda T., Schmuki P.: Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta 52 (2006) 94-101
  • 49. Yasuda K., Schmuki P.: Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (HN4)2SO4/NH4F electrolytes. Electrochimica Acta 52 (2007) 4053-4061.
  • 50. Wang N., Li X., Wang Y., Hou Y., Zou X., Chen G.: Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Materials Letters 62 (2008) 3691-3693.
  • 51. Ryu W.H., Park C.J., Kwon H.S.: Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization. Journal of Nanoscience and Nanotechnology 8 (2008) 1-4.
  • 52. Tian T., Xiao X., Liu R., She H., Hu X.: Study on titania nanotube arrays prepared by titanium anodization in HN4F/H2SO4 solution. Journal of Materials Science 42 (2007) 5539-3342.
  • 53. Tian T., Xiao X-F., She H-D., Liu R-F.: Biomimetic growth of apatite on titania nanotube arrays fabricated by titanium anodization in HN4F/H2SO4 electrolyte. Materials Science-Poland, vol.8, no.3 (2008) 487-494.
  • 54. Ghicov A., Tsuchiya H., Macak J.M., Schmuki P.: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications 7 (2005) 505-509.
  • 55. Luo B., Yang H., Liu S., Fu W., Sun P., Yuan M., Zhang Y., Liu Z.: Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti-6Al-4V alloy. Materials Letters 62 (2008) 4512-4515.
  • 56. Macak J.M., Tsuchiya H., Ghicov A., Schmuki P.: Formation and properties of anodic TiO2 nanotube layers. Electrochemical Communications 7 (2005) 1133-1137.
  • 57. Kunze J., Muller L., Macak J.M., Greil P., Schmuki P., Muller F.A.: Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta 53 (2008) 6995-7003.
  • 58. Narayanan R., Seshadri S.K., Kwon T.Y., Kim K.H.: Electrochemical nano-grained calcium phosphate coatings on Ti-6Al-4V for biomaterial applications. Scripta Materialia 56 (2007) 229-232.
  • 59. Ban S., Maruno S.: Hydrothermal-electrochemical deposition of hydroxyapatite. J. Biomed Mater Res 42 (1998) 387-395.
  • 60. Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Mater, Springer (2009) Article in progress.
  • 61. Kokubo T., Takadama H.: How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27 (2006) 2907-2915.
  • 62. Kodama A., Bauer S., Komatsu A., Asoh H., Ono S., Schmuki P.: Bioactivation of titanium surfa ces Rusing coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia (2009), Article in progress.
  • 63. Bohner M., Lemaitre J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179.
  • 64. Kong L., Gao Y., Lu G., Gong Y., Zhao N., Zhang X.: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal 42 (2006) 3171-3179.
  • 65. ISO Standard: ISO 13779-4: 2002. Implants for surgery-hydroxyapatite-part 4: determination of coating adhesion strength. http://www.iso.org/iso/catalogue_detail.htm?csnumber=30723
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.