PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heart valve bioprothesis; effect of different acellularizations methods on the biomechanical and morphological properties of porcine aortic and pulmonary valve

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tissue engineering is a promising tool for the creation of a new type of the heart valve bioprothesis. The biological scaffold composed of decellularized tissue has been successfully used for the constructions of the valve prosthesis. An analysis of the efficiency of the valve leaflet acellularization methods and the influence of those methods on the morphology and the biomechanical properties of the ECM (extra cellular matrix) was performed. Fresh porcine hearts obtained from a slaughterhouse were used in the experiments. The efficiency of the acellularization methods was dependent on the tissue type and the acellularoization methods used. The more effective were the enzymatic methods, both because of the cell removal efficiency and the effect on the biomechanical properties of the heart valve. The differences in the biomechanical and morphological properties of the porcine aortic and the pulmonary valve after different types of the acellularization process could influence the hemodynamic conditions of the heart after the valve replacement, which limited the range of the tissue types used for the creations of the tissue engineered heart valve.
Rocznik
Strony
337--342
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • Foundation for Cardiac Surgery Development, 345a Wolności St., 41-800 Zabrze, Poland, mildes@post.home.pl
Bibliografia
  • [1] S.A. North, R. Sadler, A.W. Stewart, L. McCowan, A.R. Kerr, and H.D White, “Long-term survival and valve-related complications in young women with cardiac valve replacements”, Circulation 99, 2669–2676 (1999).
  • [2] S.S. Khan, A. Trento, M. DeRobertis, R.M. Kass, M. Sandhu, L.S.C. Czer, C. Blanche, S. Raissi, G.P. Fontana, and W. Cheng, “Twenty-year comparison of tissue and mechanical valve replacement”, J. Thorac. Cardiovasc. Surg. 122, 257–269(2001).
  • [3] P. Hogan, L. Duplock, and M.F. O’Brien, “Human aortic valve allograft elicit a donor-specific immune response”, J. Thorac. Cardiovasc. Surg. 112, 1260–1266 (1996).
  • [4] S.P. Hoerstrup, A. Kadner, S. Meltnichouk, A. Trojan, K. Eid, J. Tracy, R. Sodian, J.F. Visjager, S.A. Kolb, J. Grunenfelder, G. Zund, and M.I. Turina, “Tissue engineering of functional trileaflet heart valves from human marrow stromal cells”, Circulation 106, I-143-I-150 (2002).
  • [5] S. Cebotari, H. Mertsching, K. Kallenbach, S. Kostin, O. Repin, A. Batrinac, C. Kleczka, A. Ciubotaru, and A. Haverich, “Construction of autologous human heart valves based on acellular allograft matrix”, Circulation 106, I-63-I-689 (2002).
  • [6] C. Booth, S.A. Karossis, H.E. Wilcox, K.G. Watterson, J.N. Kearney, J. Fisher, and E. Ingham, “Tissue engineering of cardiac valve protheases I: development and histological characterization of an acellular porcine scaffold”, J. Heart Valve Dis. 11 (4), 457–62 (2002).
  • [7] H.C. Grillo and C.F. McKhann, “The acceptance and evolution of dermal homografts freed of viable cells”, Transplantation 2, 48–59 (1964).
  • [8] C.H. Fang, E.C. Robb, G.S. Yu, J.W. Alexander, and G.D.Wadden, “Observation on stability and contraction of composite skin grafts: xenodermis or allodermis with an isograft onlay”, J. Burn Care Rehab. 11, 538–42 (1990).
  • [9] W.G. Kim, J.K. Park, and W.Y. Lee, “Tissue engineered heart valve leaflets: an effective method of obtaining acellularized valve xenografts”, Int. J. Artif. Organs 25, 791–7 (2002).
  • [10] R.J. Walter, T. Matsuda, H.M. Reyes, J.M. Walter, and M. Hanumadass, “Characterization of acellular dermal matrices (ADMs) prepared by two different methods”, Burns 24, 104–13 (1998).
  • [11] O.E. Teebken, A. Bader, G. Steinhoff, and A. Haverich, “Tissue engineering of vascular grafts: Human cell seeding of decellularized porcine matrix”, Eur. J. Vasc. Endovasc. Surg. 19, 381–386 (2000).
  • [12] G. Steinhoff , U. Stock, N. Karim, H. Mertsching, A. Timke, R. Meliss, K. Pethig, A. Haverich, and A. Bader, “Tissue engineering of pulmonary hearts valves on allogenic acellular matrix conduits”, Circulation 102, S III 50–55 (2000).
  • [13] A. Bader, G. Steinhoff, K. Strobl, T. Schilling, G. Brandes, H. Mertsching, D. Tsikas, J. Froelich, and A. Haverich, “Engineering of human vascular aortic tissue based on xenogenic starter matrix”, Transplantation 70, 4–14 (2000).
  • [14] M-T. Kasimir, E. Rieder, G. Seebacher, G. Silberhumer, E. Wolner, and P. Simon, “Comparison of different decellularization procedures of porcine heart valves”, Int. J. Artif. Organs 26, 421–427 (2003).
  • [15] S.A. Korossis, C. Booth, H.E. Wilcox, K.G. Watterson, J.N. Kearney, J. Fisher, and E. Ingham, “Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized aortic heart valve”, J. Heart Valve Dis. 11 (4), 463–471 (2002).
  • [16] V.Samouillan, J.Dandurand-Lods, A.Lamure, E. Maurel, C. Lacabanne, G. Gerosa, A. Venturini, D. Casarotto, L. Gherardini, and M. Spina, “Thermal analysis characterization of aortic tissue for cardiac valve bioprostheses”, J. Biomed. Mater. Res. 46, 531–8 (1999).
  • [17] E. Bodnar, E.G.J. Olsen, R. Florio, and J. Dobrin, “Damage of porcine aortic valve tissue by the surfactant sodium dodecylsulfate”, Thorac. Cardiovasc. Surg. 34, 82–85 (1986).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.