PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue damage mechanisms and damage evolution near cyclically loaded edges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A combined experimental and numerical approach was applied to develop a basic understanding of the fatigue damage process taking place at edges exposed to cyclic mechanical loads. A recently developed cyclic edge-loading test was used in order to simulate the fatigue loading of the edges of manufacturing tools and to study the microscopic damage mechanisms. Accompanying finite element calculations were performed to provide a better understanding of the loading conditions at edges subjected to cyclic mechanical loads. A comparison of the numerical simulation with the experimental results revealed good accordance. Main results of the investigations are the distribution of plastic strains and their evolution with increasing number of cycles, the distribution of the residual stresses, the localisation and the evolution of damage at the microscale (microcracks and voids), and the localisation and growth of fatigue cracks. Micro-damage develops in the entire plastically deformed region. Fatigue crack nucleation was mainly found in deformation bands and fatigue crack growth was only observed near the transition region between the extensively and the slightly plastically deformed zone not at the loaded area but at the side area. The reason for that phenomenon is the formation of tensile residual stresses in this region which is favouring fatigue crack growth.
Rocznik
Strony
267--279
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] H. Chandrasekaran, S. Svensson, and M. Nissel, “Tool chipping during power hack sawing and the role of saw material characteristics”, Ann. CIRP 36 (1), 27–31 (1987).
  • [2] D. Gamby, C. Henaff-Gardin, and M.C. Lafarie-Frenat, “Propagation of edge cracking towards the centre of laminated composite plates subjected to fatique loading”, Composite Structures 56 (2), 183–190 (2002).
  • [3] V. Leskovsˇek, B. Ule, A. Rodiˇc, and D. Lazar, “Optimization of vacuum heat treatment of cutting dies made from HSSM2 (AlSl)”, Vacuum 43 (5–7), 713–716 (1992).
  • [4] M.T. Hanson and L.M. Keer, “Analysis of edge effects on railwheel contact”, Wear 144 (1–2), 39–55 (1991).
  • [5] P.J. Gruber, W. Ecker, M. Krobath, S. Marsoner, G. Jesner, R. Ebner, and O. Kolednik, “Loading conditions and damage evolution near the edge of a stamping tool-new experiments and numerical simulations”, Proc. Tool 09 – Tool Steels Conf. 1, CD-ROM (2009).
  • [6] P.J. Gruber, G. Jesner, R. Ebner, and O. Kolednik, “Highstrength steel under monotonic and cyclic loading – a study on damage evolution near the edge of a stamping tool”, BHM 154 (5), 205–210 (2009).
  • [7] Internal report at MCL, (2008).
  • [8] B. Griffiths, “Manufacturing surface technology - surface integrity and functional performance”, Manufacturing Engineering Modular Series 1, CD-ROM (2001).
  • [9] P.J. Gruber, “Characterisation of the behaviour of high-strength tool steel edges under cyclic loading”, PhD Thesis, University of Leoben, Leoben, 2010.
  • [10] T.L. Anderson, Fracture mechanics – Fundamentals and applications, CRC Press Taylor & Francis Group, Boca Raton, 2005.
  • [11] J.L. Chaboche, “Continuous damage mechanics – A tool to describe phenomena before crack initiation”, Nuclear Engineering and Design 64, 233–247 (1981).
  • [12] W. Ecker, M. Leindl, T. Antretter, R. Ebner, I. Siller, and S. Nissle, “Effect of material properties on the thermomechanical loading and damage of pressure casting dies – a numerical study”, Proc. Tool 09 – Tool Steels Conf. 1, CD-ROM (2009).
  • [13] C. Genzel, C. Stock, and W. Reimers, “Application of energydispersive diffraction to the analysis of multiaxial residual stress fields in the intermediate zone between surface and volume”, Materials Science and Engineering 372 (1–2), 28–43 (2004).
  • [14] S. Suresh, A. Mortensen, and A. Needleman, Fundamentals of Metal Matrix Composites, Butterworth – Heinemann, New York, 1993.
  • [15] S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.
  • [16] T. Wehner and A. Fatemi, “Effects of mean stress on fatigue behaviour of a hardened carbon steel”, Int. J. Fatigue 13 (3), 241–248 (1991).
  • [17] N.A. Fleck, C.S. Shin, and R.A. Smith, “Fatigue crack growth under compressive loading”, Engineering Fracture Mechanics 12 (1), 173–185 (1985).
  • [18] W. Ecker, “Modeling of the thermo-mechanical behaviour of pressure casting dies”; PhD Thesis, University of Leoben, Leoben, 2008.
  • [19] G. Jesner, S.Marsoner, I. Schemmel, K. Haeussler, and R. Ebner, “Damage mechanisms in materials for cold forging dies under loading conditions typical for dies”, Int. J. Microstructure and Materials Properties 3 (2/3), 297–310 (2008).
  • [20] G. Trattnig, T. Antretter, and R. Pippan, “Fracture of austenitic steel subject to a wide range of stress triaxiality ratios and crack deformation modes”, Engineering Fracture Mechanics 75 (2), 223–235 (2008).
  • [21] D.L. Davidson, “The observation and measurement of displacements and strain by stereoimaging”, Scanning Electron Microscopy 11, 79–86 (1979).
  • [22] A. Tatschl and O. Kolednik, “On the experimental characterization of crystal plasticity in polycrystals”, Materials Science and Engineering A 342, 152–168 (2003).
  • [23] A. Tatschl and O. Kolednik, “A new tool for the experimental characterization of micro-plasticity”, Materials Science and Engineering A 339, 115–122 (2003).
  • [24] K. Unterweger and O. Kolednik, “The local deformation behaviour of MMCs – an experimental study”, Z. Metallkunde 96, 1063–1068 (2005).
  • [25] I.C. Noyan and J.B. Cohen, Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, Berlin, 1987.
  • [26] Realistic Simulation Solutions, www.simulia.com.
  • [27] J.L. Chaboche, “Constitutive equations for cyclic plasticity and cyclic viscoplasticity”, Int. J. Plasticity 5, 247–302 (1989).
  • [28] J. Lemaitre and J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.