PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase transformations contributing to the properties of modern steels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of phase transformation theory in contributing to the development of innovative steels is assessed, focusing on examples where the relationship is transparent. Virtually all of the major transformations, ranging from those which necessarily involve diffusion, to others where the change in crystal structure is achieved by a deformation, are considered.
Rocznik
Strony
255--265
Opis fizyczny
Bibliogr. 107 poz., rys., tab.
Twórcy
autor
  • Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, U.K., hkdb@cam.ac.uk
Bibliografia
  • [1] Anonymous, “Iron and steel: principles of manufacture, structure, composition and treatment”, Machinery’s Reference Book 1, 36 (1910).
  • [2] F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers, Essex, 1978.
  • [3] F.B. Pickering, Constitution and Properties of Steels, VCH Publishers, London, 1992.
  • [4] H.K.D.H. Bhadeshia, “Mathematical models in materials science”, Materials Science and Technology 24, 128–135 (2008).
  • [5] J.D. Watson and P.G. McDougall, “The crystallography of Widmanst¨atten ferrite”, Acta Metallurgica 21, 961–973 (1973).
  • [6] T. Ko and S.A. Cottrell, “The formation of bainite”, J. Iron and Steel Institute 172, 307–313 (1952).
  • [7] G.R. Srinivasan and C.M. Wayman, “The crystallography of the bainite transformation”, Acta Metallurgica 16, 621–636 (1968).
  • [8] E. Swallow and H.K.D.H. Bhadeshia, “High resolution observations of displacements caused by bainitic transformation”, Materials Science and Technology 12, 121–125 (1996).
  • [9] M. Strangwood and H.K.D.H. Bhadeshia, “Mechanism of acicular ferrite formation in alloy steel weld depos”, in Advances in Welding Technology and Science, ed. S.A. David, pp. 209–213, ASM International, USA, 1987.
  • [10] S.S. Babu and H.K.D.H. Bhadeshia, “Stress and the acicular ferrite transformations”, Materials Science and Engineering A 156, 1–9 (1992).
  • [11] A.B. Greninger and A.R. Troiano, “Kinetics of the austenite to martensite transformation in steel”, Trans. ASM 28, 537 (1940).
  • [12] J.S. Bowles and J.K. MacKenzie, “The crystallography of martensite transformations, part I”, Acta Metallurgica 2, 129–137 (1954).
  • [13] M.S. Wechsler, D.S. Lieberman, and T.A. Read, “On the theory of the formation of martensite”, Trans. AIME J. Metals 197, 1503–1515 (1953).
  • [14] J.W. Christian, “The origin of surface relief effects in phase transformations”, in Decomposition of Austenite by Diffusional Processes, eds. V.F. Zackay and H.I. Aaronson, pp. 371–386, Interscience, New York, 1962.
  • [15] H.K.D.H. Bhadeshia, “Rationalisation of shear transformations in steels”, Acta Metallurgica 29, 1117–1130 (1981).
  • [16] M.X. Zhang and P.M. Kelly, “Crystallographic features of phase transformations in solids”, Progress in Materials Science 54, 1101–1170 (2009).
  • [17] G.B. Olson and M. Cohen, “A general mechanism of martensitic nucleation, parts i-iii”, Metallurgical Transactions A 7A, 1897–1923 (1976).
  • [18] C.L. Magee, “The nucleation of martensite”, in Phase Transformations, eds. H.I. Aaronson and V.F. Zackay, pp. 115–156, ASM International, Ohio, 1970.
  • [19] R.F. Hehemann, “The bainite transformation”, in Phase Transformations, eds. H.I. Aaronson and V.F. Zackay, pp. 397–432, American Society of Materials, Ohio, 1970.
  • [20] H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 2001.
  • [21] H.K.D.H. Bhadeshia and J.W. Christian, “The bainite transformation in steels”, Metallurgical & Materials Transactions A 21A, 767–797 (1990).
  • [22] H.K.D.H. Bhadeshia, “Theoretical analysis of changes in cementite composition during the tempering of bainite”, Materials Science and Technology 5, 131–137 (1989).
  • [23] M. Takahashi and H.K.D.H. Bhadeshia, “Model for transition from upper to lower bainite”, Materials Science and Technology 6, 592–603 (1990).
  • [24] S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia, “Mechanical stabilisation of austenite”, Materials Science and Technology 22, 641–644 (2006).
  • [25] Y. Ito and M. Nakanishi, “Study on charpy impact properties of weld metal with SAW”, The Sumitomo Search 15, 42–62 (1976).
  • [26] D.J. Abson and R.J. Pargeter, “Factors influencing the asdeposited strength, microstructure and toughness of manual metal arc welds suitable for C-Mn steel fabrications”, Int. Materials Reviews 31, 141–194 (1986).
  • [27] G.B. Olson, H.K.D.H. Bhadeshia, and M. Cohen, “Coupled diffusional/displacive transformations, part II: Solute trapping”, Metallurgical Materials Transactions A 21A, 805–809 (1990).
  • [28] M. Hillert, “Diffusion in the growth of bainite”, Metallurgical Materials Transactions A 25, 1957–1966 (1994).
  • [29] C.A. Dub´e, H.I. Aaronson, and R.F. Mehl, “La formation de la ferrite proeutectoide dans les aciers au carbonne”, Revue de Metallurgie 55, 201–210 (1958), (in French).
  • [30] H.K.D.H. Bhadeshia, “Diffusional formation of ferrite in iron and its alloys”, Progress in Materials Science 29, 321–386 (1985).
  • [31] M. Hillert, “The formation of pearlite”, in Decomposition of Austenite by Diffusional Processes, eds. V.F. Zackay and H.I. Aaronson, pp. 197–237, Interscience, New York, 1962.
  • [32] S. Hayami and T. Furukawa, “A family of high-strength, coldrolled steels”, in Microalloying ‘75, vol. 1, pp. 78–87, Union Carbide Corporation, New York, 1977.
  • [33] O. Matsumura, Y. Sakuma, and H. Takechi, “Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel”, Transactions of the Iron and Steel Institute of Japan 27, 570–579 (1987).
  • [34] W.W. Gerberich, G. Thomas, E.R. Parker, and V.F. Zackay, “Metastable austenites: decomposition and strength”, Second Int. Conf. on Strength of Metals and Alloys 1, 894–899 (1970).
  • [35] H.K.D.H. Bhadeshia, “TRIP-assisted steels?”, ISIJ International 42, 1059–1060 (2002).
  • [36] M.I. Khan, M.L. Kuntz, and Y. Zhou, “Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels”, Science and Technology of Welding and Joining 13, 294–304 (2008).
  • [37] L.X. Kong, P.D. Hodgson, and D.C. Collinson, “Modelling the effect of carbon content on hot strength of steels using a modified artificial neural network”, ISIJ International 38, 1121–1130 (1998).
  • [38] V. Narayan, R. Abad, B. Lopez, H.K.D.H. Bhadeshia, and D.J.C. MacKay, “Estimation of hot torsion stress strain curves in iron alloys using a neural network analysis”, ISIJ International 39, 999–1005 (1999).
  • [39] A. Brownrigg, “Boron in steel – a literature review”, J. Australasian Institute of Metals 18, 124–136 (1973).
  • [40] D.W. Fan, H.S. Kim, and B.C. De Cooman, “Review of the physical metallurgy related to hot press forming of advanced high strength steel”, Steel Research International 80, 241–248 (2009).
  • [41] F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers, Essex, 1978.
  • [42] H.I. Aaronson, H.A. Domian, and G.M. Pound, “Partitioning of alloying elements between austenite and proeutectoid ferrite and bainite”, TMS-AIME 236, 781–796 (1966).
  • [43] C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, “Acceleration of low-temperature bainite”, ISIJ International 43, 1821–1825 (2003).
  • [44] G.M. Cola Jr., “Properties of bainite nucleated by water quenching in 80 ms”, 1st Int. Symposium on Steel Science 1, 187–190 (2007).
  • [45] T. Lolla, G. Coal, B. Narayanan, B. Alexandrov, and S.S. Babu, “Development of rapid heating and cooling (flash processing) process to produce advanced high strength steel microstructures”, Materials Science and Technology 14, DOI 10.1179/17428409X433813 (2009).
  • [46] H.S. Yang and H.K.D.H. Bhadeshia, “Uncertainties in the dilatometric determination of the martensite-start temperature”, Materials Science and Technology 23, 556–560 (2007).
  • [47] J.W. Christian, “Deformation by moving interfaces”, Metallurgical Transactions A 13, 509–538 (1982).
  • [48] J.R. Patel and M. Cohen, “Criterion for the action of applied stress in the martensitic transformation”, Acta Metallurgica 1, 531–538 (1953).
  • [49] D.P. Dunne and C.M. Wayman, “An assessment of the double shear theory as applied to ferrous martensitic transformations”, Acta Metallurgica 19, 425–438 (1971).
  • [50] Y. Ohmori, “The crystallography of the lower bainite transformation in a plain carbon steel”, Trans. ISIJ 11, 95–101 (1971).
  • [51] A. Ohta, N. Suzuki, Y. Maeda, K. Hiraoka, and T. Nakamura, “Superior fatigue crack growth properties in newly developed weld metal”, Int. J. Fatigue 21, S113–S118 (1999).
  • [52] A. Ohta, O. Watanabe, K. Matsuoka, C. Shiga, S. Nishijima, Y. Maeda, N. Suzuki, and T. Kubo, “Fatigue strength improvement by using newly developed low transformation temperature welding material”, Welding in the World 43, 38–42 (1999).
  • [53] A. Ohta, N. Suzuki, and Y. Maeda, Properties of Complex Inorganic Solids 2, 401–408 (2000).
  • [54] P.J. Withers and H.K.D.H. Bhadeshia, “Residual stress part 1 – measurement techniques”, Materials Science and Technology 17, 355–365 (2001).
  • [55] P.J. Withers and H.K.D.H. Bhadeshia, “Residual stress part 2 – nature and origins”, Materials Science and Technology 17, 366–375 (2001).
  • [56] A. Ohta, K. Matsuoka, N.T. Nguyen, Y. Maeda, and N. Suzuki, “Fatigue strength improvement of lap welded joints of thin steel plate using low transformation temperature welding wire”, Welding Journal, Research Supplement 82, 77s–83s (2003).
  • [57] J. Eckerlid, T. Nilsson, and L. Karlsson, “Fatigue properties of longitudinal attachments welded using low transformation temperature filler”, Science and Technology of Welding and Joining 8, 353–359 (2003).
  • [58] H. Lixing, W. Dongpo, W. Wenxian, and Y. Tainjin, “Ultrasonic peening and low transformation temperature electrodes used for improving the fatigue strength of welded joints”, Welding in the World 48, 34–39 (2004).
  • [59] S. Zenitani, N. Hayakawa, J. Yamamoto, K. Hiraoka, Y. Morikage, T. Yauda, and K. Amano, “Development of new low transformation temperature welding consumable to prevent cold cracking in high strength steel welds”, Science and Technology of Welding and Joining 12, 516–522 (2007).
  • [60] J.A. Francis, H.J. Stone, S. Kundu, R.B. Rogge, H.K.D.H. Bhadeshia, P.J. Withers, and L. Karlsson, “Transformation temperatures and welding residual stresses in ferritic steels”, Proc. PVP2007, ASME Pressure Vessels and Piping Division Conf. 1, 1–8 (2007).
  • [61] Ph.P. Darcis, H. Katsumoto, M.C. Payares-Asprino, S. Liu, and T.A. Siewert, “Cruciform fillet welded joint fatigue strength improvements by weld metal phase transformations”, Fatigue and Fracture of Engineering Materials and Structures 31, 125–136 (2008).
  • [62] M.C. Payares-Asprino, H. Katsumoto, and S. Liu, “Effect of martensite start and finish temperature on residual stress development in structural steel welds”, Welding Journal, Research Supplement 87, 279s–289s (2008).
  • [63] H. Dai, J.A. Francis, H.J. Stone, H.K.D.H. Bhadeshia, and P.J. Withers, “Characterising phase transformations and their effects on ferritic weld residual stresses with X-rays and neutrons”, Metallurgical Materials Transactions A 39, 3070–3078 (2008).
  • [64] Y. Mikami, Y. Morikage, M. Mochizuki, and M. Toyoda, “Angular distortion of fillet welded T joint using low transformation temperature welding wire”, Science and Technology of Welding and Joining 14, 97–105 (2009).
  • [65] A.A. Shirzadi, H.K.D.H. Bhadeshia, L. Karlsson, and P.J. Withers, “Stainless steel weld metal designed to mitigate residual stresses”, Science and Technology of Welding and Joining 14, 559–565 (2009).
  • [66] H.K.D.H. Bhadeshia, “Strong ferritic-steel welds”, Materials Science Forum 539–543, 6–11 (2007).
  • [67] H.K.D.H. Bhadeshia, “Frontiers in the modelling of steel weld deposits”, J. Japan Welding Society 76, 26–32 (2007).
  • [68] W.K.C. Jones and P.J. Alberry, “A model for stress accumulation in steels during welding”, Metals Technology 11, 557–566 (1977).
  • [69] H.K.D.H. Bhadeshia, “Nanostructured bainite”, Proc. Royal Society of London A 463, 3–18 (2010).
  • [70] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, “Very strong, low-temperature bainite”, Materials Science and Technology 18, 279–284 (2002).
  • [71] F.G. Caballero and H.K.D.H. Bhadeshia, “Very strong bainite”, Current Opinion in Solid State and Materials Science 8, 251–257 (2004).
  • [72] C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, “Development of hard bainite”, ISIJ International 43, 1238–1243 (2003).
  • [73] M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia, “Three-dimensional atom probe analysis of carbon distribution in low-temperature bainite”, Scripta Materialia 50, 1277–1281 (2004).
  • [74] H.K.D.H. Bhadeshia, “Large chunks of very strong steel”, Materials Science and Technology 21, 1293–1302 (2005).
  • [75] H.K.D.H. Bhadeshia, “Hard bainite”, Solid-Solid Phase Transformations, TME-AIME 1, 469–484 (2005).
  • [76] T. Yokota, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, “Formation of nanostructured steel by phase transformation”, Scripta Materialia 51, 767–770 (2004).
  • [77] R. Trivedi, “Volume diffusion-controlled growth kinetics and mechanisms in binary alloys”, Solid-Solid Phase Transformations 1, 477–502 (1982).
  • [78] H.K.D.H. Bhadeshia, “Critical assessment: diffusioncontrolled growth of ferrite plates in plain carbon steels”, Materials Science and Technology 1, 497–504 (1985).
  • [79] H.K.D.H. Bhadeshia, L.-E. Svensson, and B. Gretoft, “Model for the development of microstructure in low alloy steel (Fe-Mn-Si-C) weld deposits”, Acta Metallurgica 33, 1271–1283 (1985).
  • [80] R.L. Bodnar and S.S. Hansen, “Effects of austenite grain size and cooling rate on Widmanst¨atten ferrite formation in low alloy steels”, Metallurgical Materials Transactions A 25A, 665–675 (1994).
  • [81] S. Jones and H.K.D.H. Bhadeshia, “Kinetics of the simultaneous decomposition of austenite into several transformation products”, Acta Materialia 45, 2911–2920 (1997).
  • [82] G.R. Speich, L.J. Cuddy, C.R. Gordon, and A.J. DeArdo, “Formation of ferrite from control-rolled austenite”, Phase Transformations in Ferrous Alloys 1, 341–389 (1984).
  • [83] P.J. Hurley, G.L. Kelly, and P.D. Hodgson, “Ultrafine ferrite formation during hot strip rolling”, Materials Science and Technology 16, 1273–1276 (2000).
  • [84] P.J. Hurley and P.D. Hodgson, “Effect of process variables on formation of dynamic strain induced ultrafine ferrite during hot torsion testing”, Materials Science and Technology 17, 1360–1368 (2001).
  • [85] H. Beladi, G.L. Kelly, and P.D. Hodgson, “Ultrafine grained structure formation in steels using dynamic strain induced transformation processing”, Int. Materials Reviews 52, 14– 28 (2007).
  • [86] A. Shokouhi and P.D. Hodgson, “Effect of transformation mechanism (static or dynamic) on final ferrite grain size”, Materials Science and Technology 25, 29–34 (2009).
  • [87] P.R. Rios, S. de Bott, D.B. Santos, T.M.F. de Melo, and J.L. Ferreira, “Effect of Nb on dynamic strain induced austenite to ferrite transformation”, Materials Science and Technology 23, 417–422 (2007).
  • [88] A.M. Elwazri, P. Wanjaraz, R. Varano, G.R. Stewart, S. Yue, and J.J. Jones, “Microstructure and mechanical properties of ultrafine-grained steel”, Materials Science and Technology Conf. and Exhibition 1, 1764–1775 (2008).
  • [89] J.L. Ferreira, T.M.F. de Melo, I.S. Bott, D.B. Santos, and P.R. Rios, “Influence of thermomechanical parameters on the competition between dynamic recrystallization and dynamic strain induced transformation in C-Mn and C-Mn-Nb steels deformed by hot torsion”, ISIJ International 47, 1638–1646 (2007).
  • [90] H. Beladi, G.L. Kelly, and P.D. Hodgson, “Formation of ultrafine grained structure in plain carbon steels through thermomechanical processing”, Materials Transactions 45, 2214–2218 (2004).
  • [91] P.D. Hodgson, H. Beladi, and M.R. Barnett, “Grain refinement in steels through thermomechanical processing”, Materials Science Forum 500–501, 39–48 (2005).
  • [92] W.B. Morrison, “The influence of small niobium additions on the properties of carbon-manganese steels”, J. Iron and Steel Institute 201, 317–325 (1967).
  • [93] R.W.K. Honeycombe, “Transformation from austenite in alloy steels”, Metallurgical Transactions A 7, 915–936 (1976).
  • [94] W.B. Morrison, “Microalloy steels – the beginning”, Materials Science and Technology 25, 1066–1073 (2009).
  • [95] Y. Funakawa, T. Shiozaki, K. Tomita, Y. Yamamoto, and E. Maeda, “Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides”, ISIJ International 44, 1945–1951 (2004).
  • [96] C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang, “Precipitation hardening of highstrength low-alloy steels by nanometer-sized carbides”, Materials Science and Engineering A 499, 162–166 (2009).
  • [97] A.A. Korda, Y. Mutoh, Y. Miyashita, T. Sadasue, and S.L. Manan, “In situ observation of fatigue crack retardation in banded ferrite-pearlite microstructure due to crack branching”, Scripta Materialia 8, 1835–1840 (2006).
  • [98] S.W. Thompson and P.R. Howell, “Factors influencing ferrite/ pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel”, Materials Science and Technology 8, 777–784 (1992).
  • [99] D. Chae, D.A. Koss, A.L. Wilson, and P.R. Howell, “Effect of microstructural banding on failure initiation of HY-100 steel”, Metallurgical Materials Transactions A 31A, 995–1005 (2000).
  • [100] C.F. Jatczak, D.J. Girardi, and E.S. Rowland, “On banding in steel”, Trans. ASM 48, 279–305 (1956).
  • [101] J.S. Kirkaldy, J. von Destinon-Forstmann, and R.J. Brigham, “Simulation of banding in steels”, Canadian Metallurgical Quarterly 59, 59–81 (1962).
  • [102] P.G. Bastien, “The mechanism of formation of banded structures”, J. Iron and Steel Institute 187, 281–291 (1957).
  • [103] J.S. Kirkaldy, R.J. Brigham, H.A. Domian, and R.G. Ward, “A study of banding in Skelp by electron-probe microanalysis”, Canadian Metallurgical Quarterly 2, 233–241 (1963).
  • [104] H. Tamehiro, R. Habu, N. Yamada, H. Matsuda, and M. Nagumo, “Properties of large diameter line pipe steel produced by accelerated cooling after controlled rolling”, Accelerated Cooling of Steel 1, 401–414 (1985).
  • [105] M.K. Graf, H.G. Hillenbrand, and P.A. Peters, “Accelerated cooling of plate for high-strength large-diameter pipe”, Accelerated Cooling of Steel, TMS AIME 1, 165–180 (1985).
  • [106] H. Tamehiro, T. Takeda, S. Matsuda, K. Yamamoto, and N. Okumura, “Effect of accelerated cooling after controlled rolling on hydrogen induced cracking resistance of line pipe steel”, Trans. ISIJ 25, 982–988 (1985).
  • [107] M.-C. Zhao, Y.-Y. Shan, F.R. Xiao, K. Yang, and Y.H. Li, “Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite”, Materials Letters 57, 141–145 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.