PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced microstructure diagnostics and interface analysis of modern materials by high-resolution analytical transmission electron microscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transmission electron microscopy (TEM) is a powerful diagnostic tool for the determination of structure/property relationships of materials. A comprehensive analysis of materials requires a combined use of a variety of complementary electron microscopical techniques of imaging, diffraction and spectroscopy at an atomic level of magnitude. The possibilities and limitations of quantitative TEM analysis will be demonstrated for interface studies of the following materials and materials systems: Nickel-based superalloy CMSX-10, (Zn,Cd)O/ZnO/Al2O3, (Al,Ga)N/AlN/Al2O3, GaN/LiAlO2 and FeCo-based nanocrystalline alloys.
Rocznik
Strony
237--253
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • [1] I. H¨ausler, H. Kirmse, and W. Neumann, “Composition analysis of ternary semiconductors by combined application of conventional TEM and HRTEM”, Phys. Stat. Sol. A 205, 2598–2602 (2008).
  • [2] H. Lichte, P. Formanek, A. Lenk, M. Linck, Ch. Matzeck, M. Lehmann, and P. Simon, “Electron holography: Applications to materials questions”, Annu. Rev. Mater. Res. 37, 539–588 (2007).
  • [3] W. Coene, A. Thust, M. Op de Beeck, and D. Van Dyck, “Maximum-likelihood method for focus-variation image reconstruction in high-resolution electron microscopy”, Ultramicroscopy 64, 109–135 (1996).
  • [4] S. Kret, P. Ruterana, A. Rosenauer, and D. Gerthsen, “Extracting quantitative information from high resolution electron microscopy”, Phys. Stat. Sol B 227, 247–295 (2001).
  • [5] R.J. Vincent and P.A. Midgley, “Double conical beam-rocking system for measurement of integrated electron diffraction intensities“, Ultramicroscopy 53, 271–282 (1994).
  • [6] M. Tanaka; R. Saito, K. Ueno, and Y. Harada, “Large-angle convergent-beam electron diffraction”, J. Electron Microsc. 29, 408–412 (1980).
  • [7] J.P. Morniroli, “CBED and LACBED characterization of crystal defects”, J. Microsc. 223, 240–245 (2006).
  • [8] D.A. Muller, L. F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwong, J. Silcox, N. Dellby, and O.L. Krivanek, “Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy”, Science 319, 1073-1076 (2008).
  • [9] A.K. Petford-Long and J. M. Chapman, “Lorentz microscopy”, in: Magnetic microscopy of nanostructures, eds. H. Hopster, H.P. Oepen, pp. 67–86, Springer, New York, 2005.
  • [10] M. Lehmann and H. Lichte, “Electron holographic material analysis at atomic dimensions”, Crystal Research and Technology 40, 149–160 (2005).
  • [11] P.A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography”, Ultramicroscopy 96, 413–431 (2003).
  • [12] G. Schumacher, N. Darowski, I. Zizak, H. Klingelh¨offer, W. Chen, and W. Neumann, “Temperature dependence of lattice distortion in strongly creep-deformed single crystal superalloy SC16“, Materials Science Forum 539–543, 3048–3052 (2007).
  • [13] A. Rosenauer, U. Fischer, D. Gerthsen, and A. F¨orster, “Composition evaluation by lattice fringe analysis”, Ultramicroscopy 72, 121 (1998).
  • [14] S. Blumstengel, N. Koch, S. Sadofev, P. Sch¨afer, H. Glowatzki, R.L. Johnson, J.P. Rabe, and F. Henneberger, “Interface formation and electronic structure of sexithiophene on ZnO”, Appl. Phys. Lett. 92, 193303 (2008).
  • [15] V. Srikant, J.S. Speck, and D. R. Clarke, “Mosaic structure in epitaxial thin films having large lattice mismatch”, J. Appl. Phys. 82, 4286–4295 (1997).
  • [16] P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley and M.J. Whelan, “Electron microscopy of thin crystals”, Library of Congress Cataloging in Publication Data 1, 176–185 (1977).
  • [17] O. Reentil¨a, F. Brunner, A. Knauer, A. Mogilatenko, W. Neumann, H. Protzmann, M. Heuken, M. Kneissl, M. Weyers, and G. Tr¨ankle, “Effect of the AIN nucleation layer growth on AlN material quality”, J. Cryst. Growth. 310, 4932–4934 (2008).
  • [18] D. Hull and D.J. Bacon, “Introduction to dislocations”, Int. Series on Materials Science and Technology 37, 114–115 (1984).
  • [19] C. Stampfl and C.G. Van de Walle, “Energetics and electronic structure of stacking faults in AlN, GaN, and InN”, Phys. Rev. B 57, 52–55 (1998).
  • [20] E.S. Hellman, “The polarity of GaN: a critical review”, MRS Internet J. Nitride Res. 3, 1–11 (1998).
  • [21] J. Jasinski, Z. Liliental-Weber, Q.S. Paduano, and D.W. Weyburne, “Inversion domains in AlN grown on (0001) sapphire”, Appl. Phys. Lett. 83, 2811–2813 (2003).
  • [22] I. Grzegory, B. Lucznik, M. Bockowski, and S. Porowski, ”Crystallization of low dislocation density GaN by highpressure solution and HVPE methods”, J. Cryst. Growth 300, 17–25 (2007).
  • [23] H.P. Maruska, D.W. Hill, M.C. Chou, J.J. Gallagher, and B.H. Chai, “Free-standing non-polar gallium nitride substrates”, Opto-Electronics Rev. 11, 7–17 (2003).
  • [24] E. Richter, Ch. Hennig, U. Zeimer, M. Weyers, G. Tr¨ankle, P. Reiche, S. Ganschow, R. Uecker, and K. Peters, „Freestanding two-inch c-plane GaN layers grown on (100) γ–lithium aluminium oxide by hydride vapour phase epitaxy”, Phys. Stat. Sol. C 3, 1439–1443 (2006).
  • [25] Z. Liliental-Weber, J. Jasinski, and D.N. Zakharov, “GaN growth in polar and non-polar direction”, Opto-Electronics Rev. 12 (4), 339–346 (2004).
  • [26] A. Mogilatenko, W. Neumann, E. Richter, M. Weyers, B. Velickov, and R. Uecker, „Mechanism of LiAlO2 decomposition during the GaN growth on (100) γ-LiAlO2”, J. Appl. Phys. 102, 023519 (2007).
  • [27] J. Hosoi, T. Oikawa, M. Inoue, Y. Kokubo, and K. Hama, “Measurement of partial specific thickness (net thickness) of critical-point-dried cultured fibroblast by energy analysis”, Ultramicrocopy 7, 147–153 (1981).
  • [28] A. Mogilatenko, W. Neumann, E. Richter, M. Weyers, B. Velickov, and R. Uecker, „TEM study of c-plane layers grown on γ-LiAlO2(100)”, Phys. Stat. Sol. C 5, 3712–3715 (2008).
  • [29] P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, “Fullpotential, linearized augmented plane wave programs for crystalline systems”, Comput. Phys. Commun. 59, 399–415 (1990).
  • [30] V. Mauchamp, F. Boucher, G. Ouvrard, and P. Moreau, „Ab initio simulation of the electron energy-loss near-edge structures at the Li K edge in Li, Li2O, and LiMn2O4”, Phys. Rev. B 74, 115106 (2006).
  • [31] T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, “Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga, Mn)As with a scanning Hall probe microscope”, Appl. Phys. Lett. 77 (9), 1363–1365 (2000).
  • [32] D. Jiles, Introduction to Magnetism and Magnetic Materials, CRC Press, New York, 1998.
  • [33] M. McHenry, M. Willard, and D. Laughlin, “Amorphous and nanocrystalline materials for applications as soft magnets”, Progress in Materials Science 44 (4), 291–433 (1999).
  • [34] G. Herzer, “Soft magnetic nanocrystalline materials”, Scripta Metallurgica et Materiala 33 (10–11), 1741–1756 (1995).
  • [35] H. Rose, “Historical aspects of aberration correction”, J. Electron Microsc. 58 (3), 77–85 (2009).
  • [36] D.J. Smith, “Development of aberration-corrected electron microscopy”, Microscopy and Microanalysis 14, 2–15 (2008).
  • [37] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban, “Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope”, J. Electron Microsc. 47, 395–405 (1998).
  • [38] U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.D. Rossell, and P. Denes, “Background, status and future of the transmission electron aberration-corrected microscope project”, Phil. Trans. R. Soc. A 367, 3795–3808 (2009).
  • [39] B. Kabius, P. Hartel, M. Haider, H. M¨uller, St. Uhlemann, U. Loebau, J. Zach, and H. Rose, “First application of Cc-corrected imaging for high-resolution and energy-filtered TEM”, J. Electron Micr. 1–9, doi:10.1093/jmicro/dfp021(2009).
  • [40] U. Kaiser, A. Chuvilin, J. Meyer, and J. Biskupek, “Microscopy at the bottom“, Proc. MC2009, Microscopy Conf. 3, 1–6 (2009).
  • [41] Th. LaGrange, G.H. Campbell, B.W. Reed, M. Taheri, J. Bradley Pesavento, J.S. Kim, and N.D. Browning, “Nanosecond time-resolved investigations using in situ of dynamic transmission electron microscope (DTEM)”, Ultramicroscopy 108, 1441–1449 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.