PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Routes and mechanisms towards self healing behaviour in engineering materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern man-made engineering materials demonstrate excellent mechanical properties, but the lack of the ability of self healing, i.e. the ability to remove or neutralise microcracks without (much) intentional human interaction, which is typical for most materials as encountered in nature. Such self-healing behaviour requires the presence of mobile species, atoms or molecules, in an otherwise solid material. Upon the occurrence of damage the mobile species directionally flow towards the damage location and once arrived there restores the contact between the two crack faces and the mechanical integrity. This directional flow may occur during regular use conditions (self healing behaviour) or conditions during which the mobility is temporarily increased (stimulated self healing). In this manuscript a brief overview of the routes and mechanisms which have been used to create self healing behaviour in the principal classes of engineering materials: polymers, metals, ceramics, concrete, asphalt, fibre composites, is presented.
Słowa kluczowe
EN
Rocznik
Strony
227--236
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
Bibliografia
  • [1] S. van der Zwaag, Self Healing Materials: an Alternative Approach to 20 centuries of Materials Science, Springer, Dordrecht, 2007.
  • [2] J. Aizenberg and P. Fratzl, “Biological and biomimetic materials”, Adv. Mater. 21, 387–388 (2009).
  • [3] S.P. Ghosh, Self Healing Materials, Wiley Verlag, Weinheim, 2009.
  • [4] Y.C. Yuan, T. Yin, and M.Z. Rong, “Self healing in polymers and composites. Concepts, realization and outlook: a review”, Express Pol Lett. 2, 238–250 (2008).
  • [5] S.R. White, N.R. Sottos, P.H. Geubell, J.S.Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, and S. Viswanathan, “Autonomous healing of polymer composites”, Nature 409, 794–797 (2001).
  • [6] E.N. Brown, N.R. Sottos, and S.R. White, “Fracture testing of a self-healing polymer composite”, Experimental Mechanics 42, 372–379 (2002).
  • [7] E.N. Brown, N.R. Sottos, and S.R. White, “Microcapsule induced toughening in a self-healing polymer composite”, J. Materials Science 39, 1703–1710 (2004).
  • [8] E.N. Brown, N.R. Sottos, and S.R. White, “Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part I: Manual infiltration”, Composites Science and Technology 65 A, 2466–2473 (2005).
  • [9] E.N. Brown, S.R. White, and N.R. Sottos, “Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part II: In situ self-healing”, Composites Science and Technology 65 B, 2474–2480 (2005).
  • [10] S.D. Mookhoek, H. Fischer, and S. van der Zwaag, “Applying SEM-based X-ray microtomography to observe self-healing in solvent encapsulated thermoplastic materials”, Adv. Eng. Mater. 12, (2010), to be published.
  • [11] C. Dry, “Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibres into cement matrices”, Smart Materials and Structures 3 (2), 118–123 (1994).
  • [12] C. Dry, “Procedure developed for self-repair of polymer matrix composite materials”, Composite Structures 35 (3), 263–269 (1996).
  • [13] C. Dry, “Three designs for the internal release of sealants, adhesives and waterproofing chemicals into concrete”, Cement & Concrete Research 30, 1969–1977 (2000).
  • [14] R.S. Trask and I.P. Bond, “Biomimetic self-healing of advanced composite structures using hollow glass fibres”, Smart Mat. & Struct. 15, 704–710 (2006).
  • [15] R.S. Trask, G.J. Williams, and I.P.Bond, “Bioinspired selfhealing of advanced composite structures using hollow glass fibres”, J. Roy. Soc. Interface 4 A, 363–371 (2007).
  • [16] R.S. Trask, H. Williams, and I.P. Bond, “Self-healing polymer composites: mimicking nature to enhance performance”, Bioinspiration & Biomimetics 2 (1), 1–9 (2007).
  • [17] S.D. Mookhoek, H.R. Fisher, and S. van der Zwaag, “A numerical study into the effects of elongated capsules on the healing efficiency of liquid based systems”, Comp. Mater. Sci. 47, 506–511 (2009).
  • [18] S.D. Mookhoek, “Novel routes to liquid-based self-healing polymer system”, PhD Thesis, Technical University Delft, Delft, 2010.
  • [19] A.E. Garcia Schlangen and M. van de Ven, “Eectrical conductivity of asphalt mortar”, Constr. Build. Mater. 23, 3175–3181 (2009).
  • [20] S.A Hayes, F.R. Jones, K. Marshiya, and W.Zhang, “A selfhealing thermosetting composite material”, Composites Pt. A 38, 1116–1121 (2007).
  • [21] S.A. Hayes, W. Zhang, M. Branthwaite, and F.R. Jones, “Selfhealing of damage in fibre reinforced polymer-matrix composites”, J. Roy. Soc. Interface 4, 381–386 (2007).
  • [22] S.J. Picken, S.D. Mookhoek, H.R. Fischer, and S. van der Zwaag, “Self healing in nanoparticle reinforced polymers and other polymer systems”, in Optimisation of Polymer Nanocomposite Systems, chapter 12, ed. V. Mittal, Wiley, London, 2010.
  • [23] X. Chen, M.A. Dam, K. Ono, A.K. Mal, H. Shen, S.R. Nutt, and F. Wudl, “A thermally re-mendable crosslinked polymeric material”, Science 295, 1698–1702 (2002).
  • [24] X. Chen, M.A. Dam, K. Ono, A.K. Mal, H. Shen, S.R. Nutt, and F. Wudl, “New thermally remendable highly crosslinked polymeric materials”, Macromolecules 36, 1802–1807 (2003).
  • [25] R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K. Hirschberg, R.F.M. Lange, J.K.L. Lowe, and E.W. Meijer, “Reversible polymers formed from self-complementary monomers using quadrupole hydrogen bonding”, Science 278, 1601–1604 (1997).
  • [26] P. Cordier, F. Tournhilac, C. Soulie-Ziakovic, and L. Leibler, “Self-healing in a thermoreversible rubber from supramolecular assembly”, Nature 451, 977–980 (2008).
  • [27] S.J. Kalista and T.C. Ward, “Thermal characteristics of the self healing response of EMAA”, J. Roy. Soc. Interface 4, 405–411 (2007).
  • [28] R.J. Varley and S. van der Zwaag, “The development of a quasi-static test method to investigate the origin of self healing in ionomers under ballistic conditions”, Polymer Testing 27, 11–19 (2008).
  • [29] R.J. Varley and S. van der Zwaag, “Towards an understanding of thermally activated self healing of an ionomer system during ballistic penetration”, Acta Materialia 58, (2010), to be published.
  • [30] R.J. Varley and S. van der Zwaag, “The effect of cluster plastification on the self healing behaviour of ionomers”, Polymer 51, 679–696 (2010).
  • [31] B. Ghosh and M.W. Urban, “Self repairing oxetane substituted chitosan polyurethane networks”, Science 323, 1458–1460 (2009).
  • [32] R.N. Lumley, I.J Polmear, and A.J. Morton, “Interrupted aging and secondary precipitation in aluminium alloys”, Mater. Sci. Technol. 19, 1483–1490 (2003).
  • [33] N. Shinya, J. Kyono, and K. Laha, “Self-healing effect of boron nitride precipitation on creep cavitation in austenitic stainless steels”, J. Intelligent Material Systems and Structures 17, 1127–1133 (2006).
  • [34] K. Laha, J. Kyono, and N. Shinya, “An advanced creep cavitation resistance in Cu-containing 18Cr-12Ni-Nb austenitic stainless steels”, Scripta Mater. 56, 915–918 (2007).
  • [35] S. van der Zwaag, N.H. van Dijk, H.M. Jonkers, and W.G. Sloof, “Self healing in man-made engineering materials: bioinspired but taking into account their intrinsic character”, Phil. Trans. Roy. Soc. A. Math. Phys. Eng. Sci. 367, 1689–1704 (2009).
  • [36] S. Hautakangas, H. Schut, S. van der Zwaag, P.E.J. Rivera Diaz del Castillo, and N.H. van Dijk, “The role of the aging temperature on the self healing kinetics in an underaged AA2024 aluminium alloy”, Self healing Materials: an Alternative Approach to 20 Centuries of Materials Science 100, CD-ROM (2007).
  • [37] S. Hautakangas, H. Schut, N.H. Van Dijk, P.E.J. Rivera Diaz del Castillo, and S. van der Zwaag, “Self healing of deformation damage in underaged Al-Cu-Mg alloys”, Scripta Mater. 58, 719–722 (2008).
  • [38] V. Kochubey and W.G. Sloof, “Self healing mechanism in thermal barrier coatings”, Proc. Int. Thermal Spray Conf. 1, CDROM (2008).
  • [39] K. Ando, K. Furusawa, K. Takahashi, and S. Sato, “Crackhealing ability of structural ceramics and a new methodology to guarantee the structural integrity”, J. Eur. Ceram Soc. 25, 549–555 (2005).
  • [40] G.M. Song, Y.T. Pei, W.G. Sloof, S.B. Li, J.Th.M. De Hosson, and S. van der Zwaag, “Oxidation induced crack healing of Ti3AlC2 ceramics”, Scripta Mater. 58, 13–16 (2008).
  • [41] G.M. Song, Y.T. Pei, W. G. Sloof, S.B. Li, J.Th.M. De Hosson, and S. van der Zwaag, “Early stages of oxidation of Ti3AlC2 ceramics”, Mater. Chem. Phys. 112, 762–768 (2008).
  • [42] S. Li, G.M. Song, W.G. Sloof, S. van der Zwaag, and J.Th.M. De Hosson, “Self healing ceramic with repeatable repairability of damage events”, Science 328, (2010), to be published.
  • [43] J. Peng, A. Dudley Saville, and A.Ilhan, “Self-healing materials”, 1st Proc. Conf. on Self Healing Materials 1, CD-ROM (2005).
  • [44] S. Luding and A.S.J. Suiker, “Self-healing of damaged particulate materials through sintering”, Philosophical Magazine 88, 28–29 (2008).
  • [45] V.C. Li and E. Yang, “Self healing in concrete materials”, Self healing materials - an Alternative Approach to 20 Centuries of Materials Science 1, 161–194 (2007).
  • [46] T.G. Nijland, J.A. Larbi, R.P.J. van Hees, B. Lubelli, and M. de Rooij, “Self healing phenomena in concretes and masonry mortars: a microscopic study”, Proc. 1st Int. Conf. on Self Healing Materials 1, 1–9 (2007).
  • [47] M.D. Lepech and V.C. Li, “Long term durability performance of engineered cementitious composites”, Int. J. Restoration Buildings Monuments 12 (2), 119–132(2006).
  • [48] S.S. Bang, J.K. Galinat, and V. Ramakrishnan, “Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii”, Enzyme Microb. Tech. 28, 404–409 (2001).
  • [49] W. De Muynck, D. Debrouwer, N. De Belie, and W. Verstraete, “Bacterial carbonate precipitation improves the durability of cementitious materials”, Cem. Concr. Res. 38, 1005–1014 (2008).
  • [50] H.M. Jonkers, “Self healing concrete: a biological approach”, in Self Healing Materials – an Alternative Approach to 20 Centuries of Materials Science pp. 195–204, ed. S. van der Zwaag, Springer, Dordrecht, 2007.
  • [51] H.M. Jonkers and E. Schlangen, “Development of a bacteriabased self healing concrete”, Proc. Int. FIB Symposium 1, 425–430 (2008).
  • [52] H.M. Jonkers and E. Schlangen, “A two component bacteria based self healing concrete”, Concr. Repair, Rehab. and Retrofit. 1, 119–120 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.