PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling of the microstructure and properties in the length scales varying from nano- to macroscopic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to show the recent progress in multi length scale modelling of the engineering materials. This progress is demonstrated using a series of examples addressing, in particular, the role of effect of the grain boundaries in shaping properties of nano-polycrystalline metals.
Rocznik
Strony
217--226
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland, kjk@inmat.pw.edu.pl
Bibliografia
  • [1] R. Sot, “Properties of crystal networks of the chosen aluminides determined ab initio”, PhD Thesis, Warsaw University of Technology, Warsaw, 2006, (in Polish).
  • [2] T. Wejrzanowski, “Modelling of the influence of grain size heterogenity on their growth in the monophase polycrystal materials”, PhD Thesis, Warsaw University of Technology, Warsaw, 2006 (in Polish).
  • [3] P. Spiewak, “Modelling of properties of point defects and their clusters in dislocation – free single crystal germanium”, PhD Thesis, Warsaw University of Technology, Warsaw, 2009.
  • [4] R. Dobosz, “Influence of grain boundaries on plastic resistivity of polycrystal nanomaterials”, PhD Thesis, Warsaw University of Technology, Warsaw, 2010, (in Polish).
  • [5] M. Muzyk, “Modelling of grain boundary structure and properties in aluminium and its alloys”, PhD Thesis, Warsaw University of Technology, to be published, (in Polish).
  • [6] R. Sot and K.J. Kurzydlowski, “Atomic modelling of point defects in B2-RuAl”, Materials Science – Poland 23, 407–411 (2005).
  • [7] M. Muzyk and K.J. Kurzydlowski, “Density functional theory calculations of properties of point defects in B2-NiAl intermetallic compound”, Scripta Materialia 62, (2010), to be published.
  • [8] R. Sot and J. Piechota, “First principles study of Al(100) twisted interfaces”, Solid State Phenomena 129, 131 (2007).
  • [9] W.L. Spychalski, K.J. Kurzydłowski, and B. Ralph, “Computer study of inter- and intra-granular surface crack in brittle polycrystal”, Materials Characterization 49, 45–53 (2002).
  • [10] J. Wróbel, L.G. Hector, T. Wejrzanowski, and K.J. Kurzydłowski, “Mechanical and thermodynamical properties of X-La intermetallic compounds on the basis of computations from first principles (X=Al,Mg)”, Material Engineering School 1, CD ROM (2009), (in Polish).
  • [11] R. J. Schlitz and J. F. Smith, “Elastic constants of some MAl2 single crystals”, J. Appl. Phys. 45, 4681 (1974).
  • [12] V. Blum and A. Zunger, “Prediction of ordered structures in the bcc binary systems of Mo, Nb, Ta, and W from first-principles search of approximatelly 3,000,000 possible configurations”, Phys. Rev. B 72, 020104 (2005).
  • [13] S.V. Barabash, R.V. Chepulskii, V. Blum, and A. Zunger, “First-principles determination of low-temperature order and ground states of Fe-Ni, Fe-Pd, and Fe-Pt”, Phys. Rev. B 80, 220201 (2009).
  • [14] G. Kresse and J. Furthm¨uller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set”, Phys. Rev. B 54, 11169 (1996).
  • [15] R. Kozubski, M. Kozłowski, J. Wróbel, T. Wejrzanowski, K. Kurzdłowski, Ch. Goyhenex, M. Rennhofer, and S. Malinov, “Atomic ordering in nano-layered FePt: multiscale Monte Carlo simulation”, Computational Materials Science 48, (2010), to be published.
  • [16] M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge channels for high-mobility Metal-Oxide-Semiconductor Field-Effect Transistors”, J. Appl. Physics 97, 011101 (2005).
  • [17] The International Technology Roadmap for Semiconductors, http://www.itrs.net (2009).
  • [18] J. Vanhellemont, O. De Gryse, S. Hens, P. Vanmeerbeek, D. Poelman, P. Clauws, E. Simoen, C. Claeys, I. Romandic, A. Theuwis, G. Raskin, H. Vercammen, and P. Mijlemans, “Grown-in lattice defects and diffusion in Czochralski-grown germanium”, Defect and Diffusion Forum 230–232, 149–176 (2004).
  • [19] E. Wachowicz and A. Kiejna, “Effect of impurities on grain boundary cohesion in bcc iron”, Computational Materials Science 43, 736–743 (2008).
  • [20] M. Winning, G. Gottstein, and L.S. Shvindlerman, “Stress induced grain boundary motion”, Acta Materialia 49, 211–219 (2001).
  • [21] P. Lejcek, S. Hofmann, and V. Paidar, “Solute segregation and classification of [100] tilt grain boundaries in iron: consequences for grain boundary engineering”, Acta Materialia 51, 3951–3963 (2003).
  • [22] C. Zheng and Y.W. Zhang, “Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature”, Materials Science & Engineering A 423, 97–101 (2006).
  • [23] A. Balkowiec, J. Brunner, J. Michalski, H. Matysiak, and K.J. Kurzydlowski, “Grain boundary mis-orientation effect on intergranular corrosion in aluminium sheets”, 11th Int. Conf. on Aluminium Alloys 1, CD-ROM (2008).
  • [24] T. Wejrzanowski, M. Spychalski, R. Pielaszek, and K.J. Kurzydlowski, “Grain boundary migration in nanocrystalline iron”, Solid State Phenomena 129, 145–150 (2007).
  • [25] T. Wejrzanowski and K.J. Kurzydlowski, “Modelling of grain growth in nano-polycrystalline materials”, 5th Int. Conf. on Mechanics & Materials in Design 1, CD-ROM (2006).
  • [26] E.O. Hall, “The deformation and ageing of mild steel: II Characteristics of the L¨uders deformation”, Proc. Phys. Soc. B 64, 742–748 (1951).
  • [27] N.J. Petch, “The cleavage stress of polycrystals”, J. Iron. Steel Inst. 174, 25–28 (1953).
  • [28] R.W. Armstrong, “The influence of polycrystal grain size on mechanical properties”, Advances in Materials Research 4, 101–146 (1970).
  • [29] S. Berbenni, V. Favier, and M. Berveiller, “Micro–macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials”, Computational Materials Science 39, 96–105 (2007).
  • [30] H.C. Choi and K.T. Park, “The effect of carbon content on the Hall-Petch parameter in the cold drawn hypereutectoid steels”, Scripta Materialia 34, 857–862 (1996).
  • [31] C. Mercer and W.O. Soboyejo, “Hall-Petch relationships in gamma titanium aluminides”, Scripta Materialia 35, 17–22 (1996).
  • [32] R. Mahmudi, “Grain boundary strengthening in a fine grained aluminium alloy”, Scripta Metallurgica et Materialia 32, 781–786 (1995).
  • [33] N. Hansen, “Boundary strengthening in undeformed and deformed polycrystals”, Materials Science & Engineering A 409, 39–45 (2005).
  • [34] I. Watanabe, K. Terada, E.A. de Souza Neto, and D. Peric, “Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis”, J. Mechanics and Physics of Solids 56, 1105–1125 (2008).
  • [35] D.S. Balint, V.S. Deshpande, A. Needleman, and E. Van der Giessen, “Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals”, Int. J. Plasticity 24, 2149–2172 (2008).
  • [36] R. Dobosz, T. Wejrzanowski, and K.J. Kurzydlowski, “Modelling the influence of the structure on the properties of nanometals”, Computer Methods in Materials Science 9, 1 (2009).
  • [37] S.C. Tjong and H. Chen, “Nanocrystalline materials and coatings”, Materials Science and Engineering R 45, 1–88 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.