PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cross-polarized normal mode patterns at a dielectric interface

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Basic features of narrow optical beam interactions with a dielectric interface are analysed. As it was recently shown, two types of paraxial beams – elegant Hermite-Gaussians of linear polarization and elegant Laguerre-Gaussians of circular polarization – can be treated as vector normal modes of the interface [1]. In this contribution the problem of normal modes is discussed with special attention paid for the case of beam oblique incidence. Excitation of higher-order modes by cross-polarization coupling is described and it is shown that this process critically depends on a propagation direction of the incident beam. Besides the expected changes of mode indices induced by generalised transmission and reflection matrices, the new phenomenon of optical vortex spectral splitting at the interface is revealed and off-axis spectral placements of the splitted vortices are determined. Results of numerical simulations given here for beam reflection entirely confirm theoretical predictions even for beams beyond the range of paraxial approximation.
Rocznik
Strony
141--154
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw, Poland, wnasal@ippt.gov.pl
Bibliografia
  • [1] W. Nasalski, “Polarization versus spatial characteristics of optical beams at a planar isotropic interface”, Phys. Rev. E 74, 056613-1-16 (2006).
  • [2] M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999.
  • [3] P. Yeh, Optical Waves in Layered Media, Wiley, New York, 1976.
  • [4] W. Nasalski, “Optical beams at dielectric interfaces – fundamentals”, in Series: Trends in Mechanics of Materials, IPPT PAN, Warsaw, 2007.
  • [5] J. Picht, “Beitrag zur Theorie der Totalreflexion”, Ann. Phys. Leipzig 5, 433–496 (1929).
  • [6] F. Goos and H. H¨anchen, “Ein neuer and fundamentaler Versuch zur Totalreflexion”, Ann. Phys. Leipzig 1, 333–345 (1947).
  • [7] F.I. Fedorov, “K teorii polnovo otrazenija”, in: Dokl. Akad. Nauk SSSR 105, 465–467 (1955), (in Russian).
  • [8] C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam”, Phys. Rev. D 5, 787–796 (1972).
  • [9] H. Okuda and H. Sasada, “Significant deformations and propagation of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface”, J. Opt. Soc. Am. A 25, 881–890 (2008).
  • [10] R. Zambrini and S. M. Barnett, “Quasi-intrinsic angular momentum and the measurement of its spectrum”, Phys. Rev. Lett. 96, 13901-1-4 (2006).
  • [11] G. Molina-Terriza, J.P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum”, Phys. Rev. Lett. 88, 013601-1-4 (2002).
  • [12] A.E. Siegman, “Hermite-Gaussian functions of complex argument as optical beam eigenfunctions”, J. Opt. Soc. Am. 63, 1093–1995 (1973).
  • [13] A.E. Siegman, Lasers, University Science Books, Mill Valley, 1986.
  • [14] W. Nasalski, “Longitudinal and transverse effects of nonspecular reflection”, J. Opt. Soc. Am. A 13, 172–181 (1996).
  • [15] W. Nasalski, “Three-dimensional beam reflection at dielectric interfaces”, Opt. Commun. 197, 217–233 (2001).
  • [16] W. Nasalski, “Amplitude-polarization representation of threedimensional beams at a dielectric interface”, J. Opt. A: Pure Appl. Opt. 5, 128–136 (2003).
  • [17] A. K¨oh´azi-Kis, “Cross-polarization effects of light beams at interfaces of isotropic media”, Opt. Commun. 253, 28–37 (2005).
  • [18] W. Nasalski and Y. Pagani, “Excitation and cancellation of higher-order beam modes at isotropic interfaces”, J. Opt. A: Pure Appl. Opt. 8, 21–29 (2006).
  • [19] S. Saghafi and C.J.R. Sheppard, “Near field and far field of elegant Hermite-Gaussian and Laguerre-Gaussian modes”, J. Mod. Opt. 45, 1999–2009 (1998).
  • [20] J. Enderlein and F. Pampaloni, “Unified operator approach for deriving Hermite-Gaussian and Laguerre-Gaussian laser modes”, J. Opt. Soc. Am. A 21, 1553–1558 (2004).
  • [21] A. April, “Nonparaxial TM and TE beams in free space”, Opt. Lett. 14, 1563–1565 (2008).
  • [22] W. Szabelak and W. Nasalski, „Transmission of Elegant Laguerre-Gaussian beams at a dielectric interface – numerical simulations”, Bull. Pol. Ac.: Tech. 57, 181–188 (2009).
  • [23] F.I. Baida, D. Van Labeke, J-M. Vigoureux, “Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications”, J. Opt. Soc. Am. A 17, 858–865 (2000).
  • [24] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes”, Phys. Rev. A 45, 8185–8189 (1992).
  • [25] L. Allen, M.J. Padgett, and M. Babiker, “The orbital angular momentum of light”, Progress in Optics 39, 291–372 (1999).
  • [26] A.T. O’Neil, I. Mac Vicar, L. Allen, and M.J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam”, Phys. Rev. Lett. 88, 053601-1-4 (2002).
  • [27] C.K. Carniglia and L. Mandel, “Quantization of evanescent electromagnetic waves”, Phys. Rev. D 3, 280–296 (1971).
  • [28] W. Nasalski, “Three-dimensional beam scattering at multilayers: formulation of the problem”, J. Tech. Phys. 45, 121–139 (2004).
  • [29] G.A. Deschamps, “Ray techniques in electromagnetics”, Proc. IEEE 60, 1022–1035 (1972).
  • [30] W. Nasalski, “Elegant vector normal modes at a dielectric interface”, arXiv: 0810.2291, 1–28 (2008).
  • [31] A. Aiello and J.P. Woerdman, “Role of beam propagation in Goos-H¨anchen and Imbert-Fedorov shifts”, Opt. Lett. 33, 1437–1439 (2008).
  • [32] X. Yin, L. Hesselink, H. Chin, and D.A.B. Miller, “Temporal and spectral nonspecularities in reflection at surface plasmon resonance”, Appl. Phys. Lett. 89, 041102-1-3 (2006).
  • [33] D.H. Foster, A.K. Cook, and J.U. N¨ockel, “Goos-H¨anchen induced vector eigenmodes in a dome cavity”, Opt. Lett. 32, 1764–1766 (2007).
  • [34] T. Tamir, “Nonspecular phenomena in beam fields reflected by multilayered media”, J. Opt. Soc. Am. A 3, 558–565 (1986).
  • [35] W. Nasalski, T. Tamir, and L. Lin, „Displacement of the intensity peak in narrow beams reflected at a dielectric interface”, J. Opt. Soc. Am. A 5, 132–140 (1988).
  • [36] M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics”, Phys. Rev. E 74, 066610-1-29 (2006).
  • [37] K. Yu. Bliokh and Yu.P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet”, Phys. Rev. E 75, 066609-1-10 (2007).
  • [38] V.G. Fedoseyev, “Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam”, Opt. Commun. 193, 9–18 (2001).
  • [39] K. Yasumoto and Y. Oishi, “A new evaluation of the Goos-Hanchen shift and associated time delay”, J. Appl. Phys. 54, 2170–2176 (1983).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.