PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat dissipation and temperature distribution in long interconnect lines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal and time delay aspects of long interconnect lines have been investigated. To design a modern integrated circuit we need to focus on very long global interconnects in order to achieve the desired frequency and signal synchronization. The long interconnection lines introduce significant time delays and heat generation in the driver transistors. Introducing buffers helps to spread the heat production more homogenously along the line but consumes extra power and chip area. To ensure the functionality of the circuit, it is compulsory to give priority to the time delay aspect and then the optimized solution is found by making the power dissipation as homogenous as possible and consequently the temperature distribution T (relative to ambient) as low as possible. The technology used for simulations is 65 nm node. The occurring phenomena have been described in a quantitative and qualitative way.
Rocznik
Strony
119--124
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
  • Department of Microelectronics and Computer Science, Technical University of Lodz, 221/223 Wolczanska St., 90-924 Lodz, Poland, kmg@dmcs.p.lodz.pl
Bibliografia
  • [1] International Technology Roadmap for Semiconductors, http://www.itrs.net/, 2005.
  • [2] A. Chatzigeorgiou, S. Nikolaidis, and I. Tsoukalas, “Modeling CMOS gates driving RC interconnect loads”, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing 48 (4), 413–418 (2001).
  • [3] Y.I. Ismail, E.G. Friedman, and J.L. Neves, “Dynamic and short-circuit power of CMOS gates driving lossless transmission lines”, IEEE Trans. Circuits and Systems I: Analog and Digital Signal Processing 46 (8), 950–961 (1999).
  • [4] Predictive Technology Model (PTM), http://ptm.asu.edu/, 2007.
  • [5] B. Vermeersch and G. De Mey, “Thermal impedance plots of micro-scaled devices”, Microelectronics and Reliability 46 (1), 174–177 (2006).
  • [6] G. De Mey, Various Applications of the Boundary Element Method, Editura Universitatii din Oradea, Oradea, 2002.
  • [7] Y.A. C¸ engel, Heat Transfer: a Practical Approach, McGraw-Hill, London, 2002.
  • [8] T.-Y. Chiang, K. Banerjee, and K.C. Saraswat, “Analytical thermal model for multilevel VLSI interconnects incorporating via effect”, IEEE Electron Device Letters 23 (1), 31–33 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.