PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropy component of electromagnetic force and torque

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of surface-integral representation of electromagnetic force/torque for magnetically anisotropic region. It is pointed out that in some anisotropic regions a component of electromagnetic force/torque appears - the so-called anisotropy component. The total electromagnetic field force/torque calculated with the help of Maxwell’s and Lorentz’s methods could lead to the different values for some anisotropic medium (homogeneous, without hysteresis). The coenergy method is used to evaluate total force/torque too. Analytical calculations of force/torque for isotropic and anisotropic media in electromagnetic field are presented. The condition for surface integral representation of Lorentz’s either force or torque is formulated.
Rocznik
Strony
107--117
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Institute of Industrial Electrotechnics and Informatics, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland, Dariusz.Spalek@polsl.pl
Bibliografia
  • [1] E. Bolte and C. Hahlweg, “Analysis of steady-state of high speed induction motors with exterior rotor and conductive layer on the slotted stator”, Proc. Int. Conf. Electrical Machine ICEM 1, 19 (2002).
  • [2] L.D. Landau and E.M. Lifszyc, The Classical Theory of Fields, Pergamon, New York, 1951.
  • [3] J.D. Jackson, Classical Electrodynamics, John Wiley, New York, 1999.
  • [4] K.J. Binns, P.J. Lawrenson and C.W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, New York, 1992.
  • [5] A. Benhama, A.C.Wiliamson, and A.B.J. Reece, “Virtual work approach the computation of magnetic force distribution from finite element field solutions”, IEEE Proc. Electr. Power Appl. 147 (6), 437–442 (2000).
  • [6] J.L. Coulomb and G. Meunier, “Finite element implementation of virtual work principle to magnetic or electric force and torque computation”, IEEE Transactions on Magnetics 20 (5), 1894–1896 (1984).
  • [7] K. Reichert, “Problems and trends in force and torque calculations by means of FE-methods”, Proc. Int. Conf. on Electrical Machine ICEMA 1, 1926–1932 (1996).
  • [8] A. Arkkio, “Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations”, Acta Polytechnica Scandinavica 56, 95–99 (1987).
  • [9] C.J. Carpenter, “Surface-integral methods of calculating forces on magnetized iron parts”, Inst. Electric Engineering Monograph 342, 19–28 (1959).
  • [10] J.L. Coulomb, “A methodology for the determination of total electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness”, IEEE Transactions on Magnetics 16 (6), 2514–2519 (1983).
  • [11] F. Henrotte, “Handbook for the computation of electromagnetic forces in a continuous medium”, Newsletter Int. Compumag Society 11 (2), 3–9 (2004).
  • [12] A. Bossavitt, “Forces inside a magnet”, Newsletter Int. Compumag Society 11 (1), 4–12 (2004).
  • [13] A. Bossavit, “Forces in magnetostatics and their computation”, J. Applied Physics 67 (9), 5812–5814 (1990).
  • [14] A. Kameari, “Local force calculation in 3D FEM with edge elements”, Int. J. Applied Electromagnetics in Materials 3, 231–240 (1993).
  • [15] Z. Ren and A. Razek, “Local force computation in deformable bodies using edge elements”, IEEE Transactions on Magnetics 28 (2), 1212–1215 (1992).
  • [16] F. Henrotte, H. Vande Sande, G. Deli´ege, and K. Hameyer, “Electromagnetic force density in a ferromagnetic material”, IEEE Transaction on Magnetics 40 (2), 553–556 (2004).
  • [17] L. Vandevelde and J.A.A. Melkebeek, “Computation of deformation of ferromagnetic material”, IEE Proc. Sci. Meas. Technol. 149 (5), 222–226 (2002).
  • [18] D.-H. Kim, D.A. Lowther, and J.K. Sykulski, “Efficient force calculations based on continuum sensitivity analysis,” IEEE Transactions on Magnetics 41 (5), 1404–1407 (2005).
  • [19] M. Li,D.-H.Kim,D.A.Lowther, and J.K. Sykulski,“A sensitivityapproachtoforcecalculation in electrostatic MEMS devices”, IEEE Transactions on Magnetics 44 (6), 315–317 (2008).
  • [20] R.F. Shyu, H. Yang, C.-T Pan, and P. Tsai, “Hard magnetic material for perpendicular magnetic anisotropy field in electromagnetic actuator fabrication”, Progress in Electromagnetics Research Symposium 1, 96–100 (2005).
  • [21] P.J. Tavner, “Cross-magnetisation effects in electrical machines”, IEE Proc. Electr. Power Appl. 151(3), 249–259 (2004).
  • [22] H. Vande Sande and K. Hameyer, “Comparison of neutral network and polynomial models for the approximation of nonlinear and anisotropic ferromagnetic materials”, IEE Proc. Sci. Meas. Technol. 149 (5), 214–217 (2002).
  • [23] I.V. Lindell, J.J. H¨anningen, and K.I. Nikoskinen, “Electrostatic image theory for an anisotropic boundary”, IEEE Proc. Sci. Meas. Technol. 153 (3), 188–194 (2004).
  • [24] S.E. Zirka, Y.I. Moroz, P. Marketos, and A.J. Moses, “Modelling losses in electrical steel laminations”, IEE Proc. Sci. Meas. Technol. 149 (5), 218–221 (2002).
  • [25] O. Benda, “Torque exerted on anisotropic magnetic medium by electromagnetic wave”, IEEE Transaction on Magnetics 5 (4), 921–924 (1969).
  • [26] V.G. Kogan, “Forces upon vortices in anisotropic superconductors”, Physical Review Letters 64 (18), 2192–2194 (1990).
  • [27] T. Fujioka, “A new anisotropic correction to the formula of force and torque on materials”, Proc. Int. Symposium on Applied Electromagnetics and Mechanics ISEM 1, 23–27 (2002).
  • [28] D. Spałek, “Anisotropy component of electromagnetic torque in electrical machines”, Archives of Electrical Engineering 1, 109–126 (1999).
  • [29] S.R. Holm, H. Polinder, J.A. Ferreira, M.J. Hoeijmakers, P. Van Gelder, and R. Dill, “Analytical calculation of the magnetic field in electrical machines due to the current density in an airgap winding”, Proc. Int. Conf. on Electrical Machine 20, 17–19 (2002).
  • [30] D. Spałek, “Fast analytical model of induction motor for approaching rotor eccentricity”, COMPEL Int. J. for Computation Mathematics in Electrical & Electronics Engineering 18 (4), 570–586 (1999).
  • [31] Workshop TEAM, http://ics.ec-lyon.fr/team.html – accessed in 2005.
  • [32] D. Spałek, “Spherical induction motor with anisotropic rotor – analytical solutions for electromagnetic field distribution, electromagnetic torques and power losses”, Int. Compumag Society. Testing Electromagnetic Analysis Methods (TEAM) 34, http://www.compumag.co.uk/team.html (2007).
  • [33] D. Spałek, “Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters”, Bull. Pol. Ac.: Tech. 52 (3), 239–250 (2004).
  • [34] K. Simonyi, Physikalische Elektronik, B.G. Trubner, Stuttgart, 1972.
  • [35] S. Gąsiorek and R. Wadas, Ferrites, Outline of Properties and Technology, Publishing House of Communication, Warsaw, 1987, (in Polish).
  • [36] Z.Q. Zhu and D. Howe, “Hallbach permanent magnet machines and applications review”, IEE Proc. Sci. Meas. Technol. 148 (4), 299–308 (2001).
  • [37] M. Janaszek, “New method of direct reactive energy and torque control for permanent magnet synchronous motor”, Bull. Pol. Ac.: Tech. 54 (3), 299–305 (2006).
  • [38] I.S. Gradsztajn and I.M. Ryzik, Tables of Integrals, Sums, Series and Terms, Moscow Publishing House, Moscow, 1962, (in Russian).
  • [39] D. Spalek, “Synchronous motors linear, cylindrical and spherical with permanent magnets or excited”, Bull. Pol. Ac.: Tech. 55 (3), 299–311 (2007).
  • [40] R. Morales and M. Pacas, “Predictive torque and flux control for the synchronous reluctance machine”, Bull. Pol. Ac.: Tech. 54 (3), 271–277 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.