PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vision localization system for mobile robot with velocities and acceleration estimator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a localization system for a mobile robot using the vision system and LED markers and considers the problem of velocity and acceleration estimation in the case of planar motions. Theoretical considerations include the principle of measurement and the details of Kalman estimator with illustrations based on experimental setup. The presented measurement system can be used for a realization of advanced control algorithms for skid-steering mobile robots where significant slippage phenomenon appears.
Rocznik
Strony
29--41
Opis fizyczny
Bibliogr. 21 poz., rys., fot.
Twórcy
autor
Bibliografia
  • [1] I. Dulęba, Algorithms of Motion Planning for Nonholonomic Robots, Wrocław University of Technology Publishing House, Wrocław, 1998.
  • [2] S.M. LaValle, Planning Algorithms, Cambridge University Press, Cambridge, 2006.
  • [3] H.R. Everett, Sensors for Mobile Robots: Theory and Application, AK Peters, Wellesley, Massachusetts, 1995.
  • [4] E. Bayro-Corrochano, L.E. Falcon-Morales, and J. Zamora-Esquivel, “Visually guided robotics using conformal geometric computing”, in Mobile Robots, Perception & Navigation, pp. 19–44, ed. S. Kolski, Pro Literatur Verlag, Mammendorf, 2007.
  • [5] P. Skrzypczyński, Methods of Analysis and Uncertainty Perception Reduction in Navigation System of Mobile Robot, Thesis No. 407, Poznań University Publishing House, Poznań, 2007, (in Polish).
  • [6] T. Cheviron, T. Hamel, R. Mahony, and G. Baldwin, “Robust nonlinear fusion of inertial and visual data for position, velocity and attitude estimation of UAV”, IEEE Int. Conf. on Robotics and Automation 7, 2010–2016 (2007).
  • [7] K. Kozlowski and D. Pazderski, “Stabilization of two-wheeled mobile robot using smooth control laws – experimental study”, Proc. IEEE Int. Conf. on Robotics and Automation 9, 3387–3392 (2006).
  • [8] W.E. Dixon, D.M. Dawson, E. Zergeroglu, and A. Behal, “Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system”, IEEE Transactions on Systems, Man, and Cybernetics 31 (3), 341–362 (2001).
  • [9] D. Pazderski, Control of Some Class of Nonholonomic Systems Using Kinematic Oscillator, PhD thesis, Poznań University of Technology, Poznań, 2007, (in Polish).
  • [10] P. Dutkiewicz, M. Kiełczewski, and M. Kowalski, “A tracking vision system of mobile robots”, Conf. Volume Lightmetry 02: Metrology and Testing Techniques Using Light 2, 319–327 (2002).
  • [11] J. Heikkil¨a and O. Silv´en, “A four-step camera calibration procedure with implicit image correction”, Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 5, 1106–1112 (1997).
  • [12] R.Y. Tsai, “A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses”, IEEE J. Robotics and Automation RA-3 (4), 323–344 (1987).
  • [13] J.Y. Bouguet, Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib−doc/ (2007).
  • [14] P. Kulczycki, “Applicational possibilities of nonparametric estimation of distribution density for control engineering, Bull. Pol. Ac.: Tech. 56 (4), 347–359 (2008).
  • [15] A. Levant, “Robust exact differentiation via sliding mode technique, Automatica 34, 379–384 (1998).
  • [16] G. Welch and G. Bishop, An Introduction to the Kalman Filter, TR 95-041, UNC-Chapel Hill, USA, 2002.
  • [17] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley-Interscience, London, 2006.
  • [18] D. Pazderski and K. Kozlowski, “Trajectory tracking control of skid-steering robot – experimental validation”, Proc. Triennial Event of International Federation of Automatic Control 1, CD-ROM (2008).
  • [19] C.B. Low and D. Wang, “Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective”, IEEE Transactions on Robotics 24 (3), 676–687 (2008).
  • [20] K. Kozłowski and D. Pazderski, “Practical stabilization of a skid-steering mobile robot: A kinematic-based approach”, IEEE Int. Conf. on Mechatronics 2, 519–524 (2006).
  • [21] Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, S. Jayasuriya, and Jingtai Liu, “Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation”, IEEE Transactions on Robotics 31 (3), 1087–1097 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.