PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical characteristics of new nanopowder of titania doped with nitrogen atoms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Characteristics of new nitrogen doped TiO2 prepared in an one-pot synthesis where titania (IV) complexes with ligands containing nitrogen atoms were used as a precursor are presented in this paper. The pale yellow nanopowder with crystallite size of 9 – 12 nm is obtained as a product of calcination at 310°C and repeated washing procedure. Elemental analysis shows that nitrogen (1.087 at. pct.) is present in obtained material. The morphology and microstructure of samples were examined by XRD, AFM, UV-VIS and FTIR-ATR techniques. These studies confirm that obtained powder demonstrates a significant decrease in the band gap energy value (Eg = 2.83 eV) comparing to pure TiO2 (Eg 3.22 eV). Presence of N-Ti-O bonds was confirmed via FTIR ATR. Products of the powder thermal decomposition were detected using TG-DSC technique coupled with mass spectrometry (MS). The report presents electrochemical studies which allow estimation of a flatband potential Efb on the basis of the Mott-Schottky relation.
Rocznik
Strony
23--38
Opis fizyczny
Bibliogr. 45 poz., rys., tab., fot.
Twórcy
autor
autor
  • Gdansk University of Technology, Chemical Faculty, Department of Chemical Technology, Gdansk, Poland
Bibliografia
  • 1. Fujishima A., Honda K.: Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (1974) 37-38.
  • 2. Damm C.: An acrylate polymerization initiated by iron doped titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry 18 (2006) 297-305.
  • 3. He C., Xiong Y., Shu D., Zhu X., Li X.: Preparation and photoelectrocatalytic activity of Pt(TiO2)-TiO2 hybrid films. Thin Solid Films 503 (2006) 1-7.
  • 4. Ghosh A. K., Maruska H. P.: Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes. Journal of Electrochemical Society 124 (1977) 1516-1522.
  • 5. Anpo M.: Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light. Catalysis Surveys from Japan 1 (1997) 169-179.
  • 6. Irie H., Watanabe Y., Hashimoto K.: Carbon-doped TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters 32 (2003) 772-773.
  • 7. Yu J. C., Yu J. G., Jiang Z., Zhang W. K.: Effects of F Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO Powders-2. Chemistry of Materials 14 (2002) 3808-3816.
  • 8. Ho W., Yu J., Lee S. C.: Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry 179 (2006) 1171-1176.
  • 9. Liu S., Chen H.: A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials 152 (2008) 48-55.
  • 10. Zaleska A., Górska P., Sobczak J. W., Hupka J.: Thioacetamide and thiourea impact on visible light activity of TiO2. Applied Catalysis B: Environmental 76 (2007) 1-8.
  • 11. Huang D., Liao S., Quan S., Liu L., He Z., Wan J., Zhou W.: Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. Journal of Non-Crystalline Solids 354 (2008) 3965-3972.
  • 12. Asahi R., Ohikawa T., Aoki K., Taga Y.: Visible - Light Photocatalysis Nitrogen-Doped Titanium Oxides. Science 293 (2001) 269-271.
  • 13. Górska P., Zaleska A., Kowalska E., Klimczuk T., Sobczak J. W., Skwarek E., Janusz W., Hupka J.: TiO2 photoactivity in VIS and UV Light: The influence of calcination temperature and surface properties. Applied Catalysis B: Environmental 84 (2008) 440-447.
  • 14. Kobayakawa K., Murakami Y., Sato Y.: Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. Journal of Photochemistry and Photobiology A: Chemistry, 170 (2005) 177-179.
  • 15. Sakatani Y., Okusako K., Koike H., Ando H.: Proceedings of the Symposium on Recent Development of Photocatalysis. Photofunctional Materials Society of Japan (2001) 10 (abstract).
  • 16. Yuan J., Chen M., Shi J., Shangguan W.: Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. International Journal of Hydrogen Energy 31 (2006) 1326-1331.
  • 17. Ao W., Li J., Yang H., Zeng X., Ma X.: Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technology 168 (2006) 148-151.
  • 18. Bianchi C. L., Cappelletti G., Ardizzone S., Gianella S., Naldoni A., Oliva C., Pirola C.: N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catalysis Today 144 (2009) 31-36.
  • 19. Allan N. K., Grimes C. A.: Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte. The Journal of Physical Chemistry C 111 (2007) 13028-13032.
  • 20. Gunes .S., Neugebauer H., Sariciftci N. S., Roither J., Kovalenko M., Pillwein G., Heis W. Hybrid Sollar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes. Journal Material Chemistry 16 (2006) 1095-1099.
  • 21. Bonhote P., Grätzel M., Heinen S., Walder L.: Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrode. Solar Energy Materials & Solar Cells 56 (1999) 281-297.
  • 22. Akikusa J., Kha S. U. M.: Photoresponse and IC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell. International Journal of Hydrogen Energy 22 (1997) 875-882.
  • 23. Munoz G., Chen Q., Schmuki P.: Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry 11 (2007) 1077-1084.
  • 24. Gordon F., Gomes W. P.: On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. Journal of Applid Physics D 11 (1978) L63-67.
  • 25. Madhusudan Reddy K., Baruwati B., Jaylakshmi M., Mohan Rao M., Manorama S. V.: Synthesis, characterization and redox charge transfer study, Journal of Solid State Electrochemistry 178 (2005) 3352-3358.
  • 26. Lisowska-Oleksiak A., Szybowska K.: Polish Patent Application No P387329, Sposób otrzymywania proszku ditlenku tytanu domieszkowanego azotem.
  • 27. Perez-Blanco J. M., Barber G. D.: Ambient atmosphere bonding of titanium foil to a transparent conductive oxide and anodic growth of titanium dioxide nanotubes. Solar Energy Materials and Solar Cells 92 (2008) 997-1002.
  • 28. Spurr R. A., Myers H.: Quantitative Analysis of Anatase – Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry 29 (1957) 760-762.
  • 29. Shin H., Jung H. S., Hong K. S., Lee J. K. Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method. Journal of Solid State Chemistry 178 (2005) 15-21.
  • 30. Salari M., Rezaee M., Marashi S. P. H., Aboutalebi S. H.: The role of the diluent phase in the mechanochemical preparation of TiO2 particles. Powder Technology 192 (2009) 54-57.
  • 31. Ding J., Tsuzuki T., McCormick P .G., Street R.: Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing. Journal of Magnetism and Magnetic Materials 162 (1996) 271-276.
  • 32. Tsuzuki T., McCormick P. G.: Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing. Journal of Magnetism and Magnetic Materials 162 (1996) 5143-5146.
  • 33. Guang-Lai L., Guang-Hou W.: Morphologies of rutile from TiO2 twin crystals. Journal of Materials Science Letters 18 (1999) 1243-1246.
  • 34. Bai X., Xie B., Pan N., Wang X., Wang H.: Novel three-dimensional dandelion-like TiO2 structure with high photocatalytic activity, Journal of Solid State Chemistry 181 (2008) 450-456.
  • 35. Sakthivel S., Kisch H.: Photocatalytic and Photoelectrochemical Properties of Nitrogen-Doped Titanium Dioxide. A European Journal of Chemical Physics and Physical Chemistry 4 (2003) 487-490.
  • 36. Zhao Y., Qiu H., Burda C.: The Effects of sintering on the Photocatalytic Activity of N-doped TiO Nanoparticles, Chemistry of Materials 20 (2008) 2629-2636.
  • 37. Navio J. A., Cerrillos C., Real C.: Photo-inducted Transformation, upon UV Illumination in Air, of Hyponitrile Species N2O22- Preadsorbed in TiO2 Surface. Surface and Interface analysis 24 (1996) 355-359.
  • 38. Li Y., Xie C., Peng S., Lu G., Li S.: Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical 282 (2008) 117-123.
  • 39. Liu S., Chen X., Chen X.: Preparation of N-Doped Visible-Light Response Nanosize TiO Photocatalyst Using the Acid-Catalyzed Hydrolysis Method2. Chinese Journal of Catalysis 27 (2006) 697-702.
  • 40. Ihara T., Miyoshi M., Iriyama Y., Matsumoto M., Sugihara S.: Visible-light-active oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied catalysis B: Environmental 42 (2003) 403-414.
  • 41. NIST Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/.
  • 42. Kavan L., Grätzel M.: Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta 40 (1995) 643-652.
  • 43. Boukamp B. A.: Nonlinear Least Square Fit for analysis of immitance data of electrochemical systems. Solid State Ionics 20 (1986) 31-44.
  • 44. Bard A. L., Faulkner L. R.: Electrochemical Methods: Fundamentals and Application, 2nd edn, John Wiley & Sons, Inc., New York, 2001
  • 45. Mrowetz M., Balcerski W., Colussi A. J., Hoffmann M. R.: Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physics Chemistry B 108 (2004) 17269-17273.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0018-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.