PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Porous Materials Used as Inserted Bone Implants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The materials being in use in medicine require some improvement, as well as new materials are needed. One of the newest trends in the development of implants, is applying the porous structures – scaffolds, which are expected to produce vesseled bone tissue at a quicker rate and a stable joining of implant with the body. The aim of the paper is the review of porous materials in the latest literature.
Słowa kluczowe
Rocznik
Strony
51--60
Opis fizyczny
Bibliogr. 49 poz., rys., fot.
Twórcy
  • Faculty Of Mechanical Engineering, Technical University Of Gdansk, Narutowicza 11/12 Str., 80-233 Gdansk, Poland
Bibliografia
  • 1. Rosiek G., Misiewicz C., Bieniek J.: Behaviour of a corundum porous material in a living organism – Part I – Glass and Ceramics (Acta Ceramica), 2, 1984, 41-44.
  • 2. Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006), 2651-2670.
  • 3. Gradzka-Dahlke M.: The effect of structure on mechanical properties of porous sinters made of implant steel 316L. Engineering of Biomaterials, X, 65-66, 2007, 17-19.
  • 4. Takemoto M., Fujibayashi S., Neo M., Suzuki J., Kokubo T., Nakamura T.: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26, 6014 – 6023 (2005).
  • 5. An Y.B., Lee: Synthesis of porous titanium implants by environmental–electro–discharge–sintering process. Materials Chemistry and Physics 95, 242-247 (2006).
  • 6. Rajzer I., Blazewicz M., Menaszek E., Czarny A., Zaczynska E.: The effect of the carbon fibres diameter on cell response. Engineering of Biomaterials, X, 67-68, 2007, 52-56.
  • 7. Sindut R., Laczka M., Cholewa – Kowalska K., Najman J., Szymonska J.: Porous bioactive sinters. Engineering of Biomaterials, VIII, 45, 2005, 16-23
  • 8. Ma P.X.: Materials today. 2004, 7 (5), 30-40.
  • 9. Seal B.L., Otero T.C., Panitch A.: Materials Science and Engineering, 2001, 34, 147-230.
  • 10. Pamula E., Buczynska J., Menaszek E., Bacakova L., Dobrzyński P., Bero M.: Resorbable porous scaffolds for tissue engineering. Chemik 2/2005, 57-62.
  • 11. Yang S., Leong K.F., Du Z., Chua C.K.: Tissue engineering. 2001, 7, 679-689
  • 12. Frosh K.H., Bravencik F., Lohmann C.H., Viereck V., Siggelkow H., Breme J., Dresing K., Strurmer K.M.: Cell Tissue Organs 2002, 170, 214-227.
  • 13. Pamula E., Blazewicz M., Czajkowska B., Dobrzyński P., Bero M., Kasperczyk J.: Elaboration and characterisation of biodegradable scaffolds from poly (L-lactide-co-glycolide) synthesized with low-toxic zirconium acetylacetonate. Annals of transplantation, vol.9, no.1A (suppl.) 2004, 64-67.
  • 14. Pamula E., Polok A., Menaszek E.: Degradable scaffold materials for cartilage regeneration. Engineering of Biomaterials, X, 69-72, 2007, 3-5.
  • 15. Menaszek E., Pamula E.: The effect of pore size of resorbable PGLA foams on the tissue response. In vivo study. Engineering of Biomaterials, VIII, 47-53, (2005), 221-223.
  • 16. Podrezov Yu., Firstov S., Szafran M, Kurzydlowski K.J.: Non-elastic behaviors of high-porosity ceramics and ceramic-polymer composites for medical applications. Annals of transplantation, vol.9, no.1A (suppl.) 2004, 15-19.
  • 17. Paluch D., Pielka S., Solski L., Karas J., Jaegermann Z., Michalowski S.: The study of the cytotoxycity effects of the porous corundum implants containing antibiotics. Engineering of Biomaterials, VII, 37, 2004, 38-41.
  • 18. Niedzielski K., Sindut R., Cholewa-Kowalska K., Laczka M., Kokoszka J.: New generation bioactive glass-ceramics as a substitute of bone – in vivo study. Engineering of Biomaterials, X, 67-68, (2007), 48-51.
  • 19. Lewandowski R., Grzybowski J., Jaegermann Z., Polesinski Z.: The kinetic of antibiotic setting free from ceramic implants. Polymers in Medicine, 33,3, 2003, 3-11.
  • 20. Szafran M., Bobryk E., Bereza M., Parzuchowski P.: Ceramic-polymer composites based on porous hydroxyapatite and lactide-carbonate macromonomers. Engineering of Biomaterials, VII, 38-42, (2004), 150-154.
  • 21. Slosarzcyk A., Paszkiewicz Z., Pitak A.: Rheological properties of hydroxyapatite slurries designer for preparation of highly porous bone implants using polyurethane foams as matrices. Engineering of Biomaterials, X, 61, (2007), 24-30.
  • 22. Knowles J.C., Callut S., Georgiou G.: Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials 21, (2000), 1387-1392.
  • 23. Tadic D., Beckmann F., Schwarz K., Epple M.: A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials 25, 2004.
  • 24. Chlopek J.: Composites in medicine. Composites, 1(1), (2001), 50-54.
  • 25. Ramakrishna S., Mayer J., Wintermantel E., Kam W. Leong: Biomedical applications of polymer-composite materials: a review. Composites Sciences and Technology, 61, (2001), 1189-1224.
  • 26. Szafran M., Rokicki G., Lipiec W., Konopna K., Kurzydlowski K.: The porous ceramics with metals and polymers. Composites, 2 (25), (2002), 313-317.
  • 27. Yasuda H.Y., Mahara S., Umakoshi Y., Imazato S., Ebisu S.: Microstructure and mechanical property of synthesized hydroxyapatite prepared by colloidal process. Biomaterials 21, (2000), 2045-2049.
  • 28. Olah L., Borbas L.: Properties of calcium carbonate-containing composite scaffolds. Acta of Bioengineering and Biomechanics, vol.10, 1, 2008, 61-66
  • 29. Hench L.L.: Bioceramics: from concept to clinic. Am. Ceram. Soc. Bull., vol. 72, nr 4, 1993, 93-98.
  • 30. Cao W., Hench L.L.: Bioactive materials. Ceramics International, 22, 1996, 493-507.
  • 31. de Groot K.: Hydroxylapatite as coating for implants. Interceram, 4, 1987, 38-41.
  • 32. Ratner B.D.: Biomaterials Science. An introduction to materials in medicine. Ed. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Academic Press, 1996.
  • 33. Biocybernetics and biomedical engineering 2000. Nalecz M. [red.], Biomaterials, PAN, EXIT, Warsaw, 2003.
  • 34. Bach Fr.W., Bormann D., Kucharski R., Wilk P.: Production and properties of foamed magnesium. Cellular Metals and Polymers. Eds. Springer, Zurich 2005, 77-80.
  • 35. Switzer E.: Resorbierbares metallisches osteosynthesematerial-untersuchungen zum resorptionsverhalten im meerschweinchenmodell. Vet. Med. Diss., Hanover, 2005.
  • 36. Bach Fr.W., Kucharski R., Bormann D.: Magnesium compound structures for the treatment of bone defects. Engineering of Biomaterials, IX, 56-57, (2006), 58-61.
  • 37. Bach Fr.W., Kucharski R., Bormann D., Besdo D., Besdo S., Hackenbroigh Ch., Thorey Fr., Meyer-Lindenberg A.: Design of resorption properties of the metal bane implants-application in vivo. Engineering of Biomaterials, IX, 56-57, (2006), 54-58.
  • 38. Gryn K., Chlopek J.: Hydroxyapatite scaffolds by “Robocasting” for medical applications-preliminary tests. Engineering of Biomaterials, XI, 76, 2008, 13-16.
  • 39. Cesarano J., Clavert P.: Freeforming objects with low binder slurry. US Patent #6027326, 2000.
  • 40. Saiz E., Gremillard L., Menendez G., Miranda P., Gryn K., Tomsia A.P.: Preparation of porous hydroxyapatite scaffolds. Materials Science and Engineering, C, 27, 2007, 546-550.
  • 41. Miranda P., Saiz E., Gryn K., Tomsia A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomaterialia, 2, 2006, 457-466.
  • 42. Li J.P., Habibovic P., Van del Doel M., Wilson C.E., de Wijn J.R., van Blitterswijk C.A., de Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28 (2007), 2810-2820.
  • 43. Fang Z., Starly B., Sun W.: Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Computer-Aided Design 37 (2005), 65-72.
  • 44. Chua Chee K., Leong Kah F.: Rapid Prototyping; Principles & Applications in Manufacturing. Willey & Sons 1997.
  • 45. Lewis J.A.: Direct-write assembly for ceramics from colloidal inks. Solid State & Materials Science 6, (2002), 245-250.
  • 46. Stuecker J.N., Cesarano J., Hirschfeld D.A.: Control of the viscous behaviour of highly concentrated mullite suspensions for robocasting. Journal of Materials Processing Technology 142, (2003), 318-325.
  • 47. Kalita S.J., Bose S., Hosick H.L., Bandyopadhyay A.: Development of controlled polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering, C 23, (2003), 611-620.
  • 48. Armistead R.A., Stanley J.H.: Computer tomography: A versatile technology. Advanced Materials & Processes 2/97, 33-36.
  • 49. Uklejewski R., Winiecki M., Rogala P.: On the structural-adaptive compatibility of bone with porous coated implants on the base of traditional one-phase and the modern two-phase poroelastic biomechanical model of bone tissue. Engineering of Biomaterials, IX, 54-55, (2006), 1-13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0018-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.