PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nowe fotokatalizatory na bazie TiO2. Struktura, aktywność i zastosowania

Autorzy
Identyfikatory
Warianty tytułu
EN
Novel TiO2-based photocatalysists. Structure, activity and applications
Języki publikacji
PL
Abstrakty
PL
Fotokatalityczne właściwości TiO2 wykorzystywane są między innymi do eliminacji substancji organicznych z fazy gazowej i ciekłej oraz do przygotowania powierzchni samoczyszczących. Tlenek tytanu(IV) absorbuje prawie wyłącznie promieniowanie z zakresu UV, dlatego podczas fotokatalizy wykorzystać można zaledwie od 3 do 5% promieniowania słonecznego. Zatem otrzymanie fotokatalizatora nowej generacji, aktywnego w zakresie promieniowania widzialnego (> 400 nm), znacząco rozszerzyłoby możliwości aplikacyjne fotokatalizy heterogenicznej w ochronie środowiska, przez wykorzystanie głównej części spektrum światła słonecznego lub zastosowanie źródła światła o mniejszym strumieniu mocy. Fotokatalizatory na bazie TiO2, o podwyższonej aktywności w UV lub aktywne pod wpływem światła widzialnego, można otrzymać między innymi poprzez domieszkowanie metalami, sensybilizację barwnikami lub domieszkowanie niemetalami. W niniejszej pracy przedstawiono informacje literaturowe dotyczące wpływu struktury krystalicznej TiO2 na właściwości fotokatalityczne oraz właściwości TiO2 modyfikowanego azotem, siarką, węglem oraz borem. Aktywność fotokatalityczną TiO2 odniesiono do formy, w jakiej występują domieszki, wielkości krystalitów i pola powierzchni właściwej, właściwości absorpcyjnych oraz metody otrzymywania, która determinuje te właściwości. Przedstawione badania własne obejmowały obserwację zmian topografii powierzchni, za pomocą mikroskopii sił atomowych, cienkiej warstwy kwasu laurynowego osadzonego na monokrysztale anatazu. Zauważono, że kwas laurynowy osadzany metodą wirującego dysku tworzy na powierzchni monokryształów TiO2 struktury domenowe. Warstwę kwasu laurynowego o grubości 80-90 nm naświetlano promieniowaniem z zakresu UV-Vis. Stwierdzono, że podczas naświetlania nie ulega zmianie grubość warstwy kwasu laurynowego, a jedynie zachodzi proces zmniejszania powierzchni poszczególnych struktur domenowych. Świadczy to o tym, że tylko cząsteczki położone na granicy kontaktu kwas laurynowy-TiO2-powietrze ulegają fotodegradacji. Ponadto, opisano sposób otrzymywania, właściwości fizykochemiczne oraz aktywność pod wpływem światła widzialnego 39 fotokatalizatorów własnych, otrzymanych poprzez modyfikację TiO2 substancjami zawierającymi siarkę, azot, bor i węgiel. Charakterystyka obejmowała między innymi wyznaczenie pola powierzchni właściwej, badania właściwości absorpcyjnych w zakresie UV-Vis, badania struktury krystalicznej oraz składu powierzchniowego techniką XPS. Wykazano, że fotokatalizatory aktywne w świetle widzialnym można otrzymać, wprowadzając do struktury TiO2 azot, siarkę, bor, węgiel, czy też kombinację tych niemetali. Aktywność otrzymanych fotokatalizatorów badano w modelowej reakcji fotodegradacji fenolu (21 mM) w obecności promieniowania o długości fali powyżej 400 nm. Fotokatalizatory o najwyższej aktywności w świetle widzialnym otrzymano poprzez hydrolizę izopropanolanu tytanu(IV) w obecności tioacetamidu lub tiomocznika i kalcynację w 450 C, poprzez impregnację powierzchniową TiO2 estrem trietylowym kwasu borowego i kalcynację w 400 C oraz poprzez hydrolizę izopropanolanu tytanu(IV) i kalcynację w 350 C (bez wprowadzania domieszki). Szybkość degradacji fenolu w obecności tych fotokatalizatorów przekraczała 2 žmolźdm-3źmin-1. Fotokatalizatory o najwyższej aktywności zawierały w swojej strukturze B3+, S6+ lub C-Carom., posiadały strukturę anatazu lub były bezpostaciowe, charakteryzowały się rozwiniętą powierzchnią właściwą, a ich szerokość pasma wzbronionego miała wartość zbliżoną lub wyższą od Eg czystego TiO2. W ostatnim rozdziale pracy przedstawiono nowe zastosowania tlenku tytanu(IV). Na podstawie literatury wskazano możliwości wykorzystania TiO2 do usuwania zanieczyszczeń z fazy wodnej i gazowej, do fotokonwersji CO2 oraz rozkładu wody. Przedstawione badania własne wykazały możliwość zastosowania układu UV/TiO2 do fotoutleniania silnie toksycznych jonów cyjankowych oraz do fotodegradacji nowej grupy substancji chemicznych, stanowiących potencjalne zagrożenie dla środowiska, jaką stanowią imidazoliowe ciecze jonowe. Natomiast, na bazie fotokatalizatorów aktywnych w świetle widzialnym zaproponowano fotokatalityczne oczyszczanie ścieków gospodarczo-bytowych na jednostkach pływających.
EN
Titanium dioxide represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. TiO2 shows relatively high reactivity and chemical stability under ultraviolet light (< 387nm), whose energy exceeds the band gap of 3.3 eV in the anatase crystalline phase. The development of photocatalysts exhibiting high reactivity under visible light (> 380nm) should allow the main part of the solar spectrum, even under poor illumination of interior lighting, to be used. TiO2 photocatalysts with enhanced activity under UV and visible light could be prepared by doping of non-metal elements such as nitrogen, sulfur, boron, carbon, phosphorus, fluoride and iodine. In the first part of this work, the effect of crystalline structure on TiO2 photoactivity was discussed. The literature information regarding application of single crystals of anatase and rutile for investigation of photocatalytic mechanism was shown. Subsequently, own research results considering direct observation of TiO2 photocatalytic surface reactions was presented. The photodegradation of lauric acid at an anatase single crystal surface was visualized using atomic force microscopy. Photooxidation was performed for lauric acid thin films with thickness about 80-90 nm to simulate more realistic processing conditions rather than using submonolayer films. It was noticed that lauric acid deposited by spin coating technique formed domain structure at the TiO2 surface. The phenomenon of domain surface decrease without change in the film thickness was observed. This suggests that only molecules at the crystal-air-lauric acid contact line and extended therefrom were degraded. The second part of this study is related to the presentation of literature review and own results considering TiO2-based photocatalyst doped with sulfur, nitrogen, boron and carbon. Using several new dopants, a series of TiO2 photocatalyst samples was selected for investigation aimed at correlation of their structure and photoactivity. Their intrinsic characteristics were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. The photocatalytic activity of doped TiO2 was evaluated by the degradation rate of phenol. Particularly S,N-doped (obtained by TIP hydrolysis in the presence of thioacetamide and thermal treating at 450 C), B-doped (obtained by grinding of pure TiO2 with triethyl ester boric acid and calcination at 450 C) and C-doped (obtained by TIP hydrolysis in the absence of any dopant and thermal treating at 350 C) photocatalysts were active under visible light at wavelengths greater than 400 nm. It was found that B3+, S6+ and carbon in the form of C-Carom species showed beneficial influence on photodegradation efficiency in visible light. In the last part of this study, novel application of TiO2-based photocatalyst are presented. The possibility of water/wastewater and gas phase treatment, as well as CO2 photoconversion and water splitting, are discussed. Presented own results, indicated that UV/TiO2 system could be applied for cyanide ions and ionic liquids removal from aqueous phase. In the last chapter, photocatalytic shipboard wastewater treatment system is presented. Proposed on-board system is a solar-driven system for treatment of grey wastewater generated on small and medium vessels.
Rocznik
Strony
3--122
Opis fizyczny
Bibliogr. 254 poz., rys., tab.
Twórcy
autor
  • Katedra Technologii Chemicznej
Bibliografia
  • [1] Foujishima A., Honda K.: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 1972, 37–38.
  • [2] Carey J. H., Lawrence J., Tosine H. M.: Photodegradation of PCB’s in the presence of titanium dioxide in aqueous suspension, Bull. Environ. Contam. Toxicol. 16, 1976, 697–701.
  • [3] Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W.: Environmental applications of semiconductor photocatalysis, Chem. Rev. 95, 1995, 69–94.
  • [4] Pelizzetti E., Minero C.: Metal oxides as photocatalysts for environmetal detoxification, Comments Inorg. Chem. 15, 1994, 297–337.
  • [5] Fijushima A., Rao T. N., Tryk D. A.: Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1, 2000, 1–21.
  • [6] Kapitza H., Gensler R., Zeininger H.: Self-cleaning surface coating (photocatalysis), 2008, Pat. Appl. WO2008020014.
  • [7] Othani B.: Preparing articles on photocatalysis – beyond the illusions, misconceptions and speculation, Chem. Lett. 37, 2008, 216–230.
  • [8] Fujishima A., Zhang X.: Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chimie 9, 2006, 750–760.
  • [9] Chatterjee D., Dasgupta S.: Visible light induced photocatalytic degradation of organic pollutants: J. Photochem. Photobiol. C 6, 2005, 186–205.
  • [10] Legrini O., Oliveros E.: Braun A. M.: Photochemical process for water treatment: Chem. Rev. 93, 1993, 671–698.
  • [11] Liu H., Yuan G.: Photocatalytic decomposition of phenol over a novel kind of loaded photocatalyst of TiO2/activated carbon/silicon rubber film: Reac. Kinet. Catal. L 83, 2004, 213–219.
  • [12] Malato S., Blanco J., Richter C., Milow B., Maldonado M. I.: Pre-industrial experience in solar photocatalytic mineralization of real wastewaters. Application to pesticide container recycling, Wat. Sci. Tech. 40, 1999, 123–130.
  • [13] Rodriguez S. M., Richter C., Galvez J. B., Vincent M.: Photocatalytic degradation of industrial residual waters, Sol. Energy 56, 1996, 401–410.
  • [14] Malato S., Blanco J., Richter C., Milow B., Maldonado M. I.: Pre-industrial experience in solar photocatalytic mineralization of real wastewaters. Application to pesticide container recycling, Wat. Sci. Tech. 40, 1999, 123–130.
  • [15] Sabin F., Türk T., Vogler A.: Photo-oxidation of organic compounds in the presence of titanium dioxide: determination of efficiency, J. Photochem. Photobiol. A: 63, 1992, 99–106.
  • [16] Hsien Y.-H., Chang C.-F., Chen Y.-H., Cheng S.: Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves, Appl. Catal. B 31, 2001, 241–249.
  • [17] Zaleska A., Hupka J.: Fotokataliza z wykorzystaniem TiO2, rozdz. 7. W: Zaawansowane techniki utleniania w ochronie środowiska. (Red. R. Zarzycki). Łódź: PAN 2002.
  • [18] Bakarat M. A., Chen Y. T., Huang C. P., Removal of toxic cyanide and Cu(III) ions from water by illuminated TiO2 catalyst, Appl. Catal. B 53, 2004, 13–20.
  • [19] Aguado J., van Grieken R., Lopez-Munoz M. J., Marugan J.: Removal of cyanides in wastewater by supported TiO2-based photocatalysts, Catalysis Today 75, 2002, 95–101.
  • [20] Hoffmann M. R.: Fundamentals and applications of semiconductor photocatalysis for air filtration and hazardous vapor control. (Materiały) 14th International Conference on Photochemical Conversion and Storage of Solar Energy, IPS–14, Sapporo, Japan, 4–9 August 2002, W2–O–3.
  • [21] Peral J., Ollis D. F.: Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde ad m-xylene oxidation, J. Catal. 136, 1992, 554–565.
  • [22] Kim S. B., Hwang H. T., Hong S. C.: Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst, Chemosphere 48, 2002, 347–444.
  • [23] Shang J., Du Y., Xu Z.: Photocatalytic oxidation of heptane in the gas-phase over TiO2, Chemosphere 46, 2002, 93–99.
  • [24] Ollis D. (red. H. El_Akabi): Photocatalytic purification and treatment of water and air. New York: Elsevier 1993.
  • [25] Cai R., Hashimoto K., Itoh K., Kubota Y., Fujishima A.: Photokilling of malignant cells with ultrafine TiO2 powder, Bull. Chem. Soc Jpn. 64, 1991, 1268–1273.
  • [26] Matsunaga T, Tomada R, Nakajima T, Wake H.: Photochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol Lett. 29, 1985, 211–214.
  • [27] Matsunaga T, Tomoda R, Nakajima Y, Nakamura N, Komine T.: Continuous-sterilization system that uses photosemiconductor powders, Appl Environ Microbiol. 54, 1988, 1330–1333.
  • [28] Henglein A.: Small-particle reserach: physicochemical properties of extremly small metal and semiconductor particles, Chem Rev. 89, 1989, 1861–1973.
  • [29] Maness P. C., Smolinski S. Blake D. M., Huang Z., Wolfrum E. J., Jacoby W. A.: Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl Environ Microbiol.; 65, 1999, 4094–4098.
  • [30] Yu J. C., Xie Y., Tang H. Y., Zhang L., Chan H. C., Zhao J.: Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films, J. Photochem. Photobiol. A 156, 2003, 235–241.
  • [31] Shieh K. J., Li M., Lee Y. H., Sheu S. D., Liu Y. T., Wang Y. C.: Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light, Nanomedicine: Nanotechnology, Biology, and Medicine 2, 2006, 121–126.
  • [32] Honda H., Ishizaki A., Soma R., Hashimoto K., Fujishima A.: Application of photocatalytic reaction caused by TiO2 film to improve the maintenance factor of lighting system, J. Illum. Eng Soc. Winter, 1998, 42–49.
  • [33] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura M., Shimohigoshi M., Watanabe T.: Light-induced amphiphilic surfaces, Nature 288, 1997, 431–432.
  • [34] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura M., Shimohigoshi M., Watanabe T.: Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater. 10, 1998, 135–138.
  • [35] Wang R., Sakai N., Fujishima A., Watanabe T., Hashimoto T.: Studies of surface wettability conversion on TiO2 single crystal surfaces, J. Phys. Chem. B., 103, 1999, 2188–2194.
  • [36] Sakai N., Wang R., Fujishima A., Watanabe T., Hashimoto T., Effect of ultrasonic treatment on highly hydrophobic TiO2 surfaces, Langmuir 14, 1998, 5918–5920.
  • [37] Nakajima A., Fujishima A., Hashimoto K., Watanabe T., Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminium acetylacetonate, Adv. Matter. 11, 1999, 1365–1368.
  • [38] Takeuchi M., Sakamoto K., Martra G. Coluccia S., Anpo M.: Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface, J. Phys. Chem. B, 109, 2005, 15422–15428.
  • [39] Gao Y., Masuda Y., Koumoto K.: Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution, Langmuir 20, 2004, 3188–3194.
  • [40] Lee, F. K.; Andreatta, G., Benattar, J. J.: Role of water adsorption in photoinduced superhydrophilicity on TiO2 thin films, Applied Physics Letters 90, 2007, 181928–181931.
  • [41] Khan S. U., Al-Shahry M., Ingler W. B. Jr.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2002, 2243–2245.
  • [42] Zalas M., Laniecki M.: Photocatalytic hydrogen generation over lanthanides-doped titania, Solar Energy Mat. & Solar Cells 89, 2005, 287–296.
  • [43] Galińska A., Walendziewski J.: Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial Reagents, Energy Fuels 19, 2005, 1143 –1147.
  • [44] Tan S. S., Zou L., Hu E.: Ohotosynthesis of hydrogen and methane as key components for clean energy system, Sci. Technol. Adv. Mat. 8, 2007, 89–92.
  • [45] Dey G. R., Belapurkar A. D.: Kishore K., Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water, J. Photochem. Photobiol. A Chemistry 163, 2004, 503–508.
  • [46] Tan S. S., Zou L., Hu E.: Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets, Catalysis Today 115, 2006, 269–273.
  • [47] Anpo M.: Use of visible light. Second-generation titanium dioxide photocatalysts prepared by the application of an advanced metal ion-implantation method, Pure Appl. Chem. 72, 2000, 1787–1792.
  • [48] Yamashita H., Harada M., Misaka J., Takeuchi M., Ichihashi Y., Goto F., Ishida M., Sasaki T., Anpo M.: Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: Metal ion-implantation and ionized cluster beam method, J. Synchrotron. Rad. 8, 2001, 569–571.
  • [49] Klosek, S.; Raftery, D.: Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem. B. 105, 2001, 2815–2819.
  • [50] Yamashita H., Harada M., Misaka J., Takeuchi M., Ikeue K., Anpo M.: Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photochem. Photobiol. A: Chem. 148, 2002, 257–261.
  • [51] Zang L., Macyk W., Lange C., Maier W. F., Antonius C., Meissner D., Kisch H.: Visible-light detoxification and charge generation by transition metal chloride modified titania, Chem. Eur. J. 6, 2000, 379–384.
  • [52] Nakamura I., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K.: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A: Chem. 161, 2000, 205–212.
  • [53] Takeuchi K., Nakamura I., Matsumoto O., Sugihara S., Ando M., Ihara T.: Preparation of visible-light-responsive titanium oxide photocatalysts by plasma treatment, Chem. Lett. 29, 2000, 1354–1355.
  • [54] Zhang J. L.: Novel titanium dioxide, preparation method and application therefore, 2007, Pat. Appl. CN101037226.
  • [55] Chatterjee D., Mahata A.: Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light, Appl. Catal., B Environ. 33, 2001, 119–125.
  • [56] Szaciłowski K., Macyk W., Stochel G.: Synthesis, structure and photoeceltorchemical properties of the TiO2-Prussian blue nanocomposite, J. Mater. Chem. 16, 2006, 4603–4611.
  • [57] Wang L., Ernstorfer R., Willing F., May V.: Absorption spectra related to heterogeneous electron transfer reactions: the perylene TiO2 system, J. Phys.Chem. B 109, 2005, 9589–9595.
  • [58] Hirai T., Suzuki K., Komasawa I.: Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles, J. Colloid Interface Sci. 244, 2001, 262–265.
  • [59] Srinivasan S. S., Wade J., Stefanakos E. K., Visible light photocatalysis via CdS/TiO2 nanocomposite materials, J. Nanomaterials 2006, 2006, 1–7.
  • [60] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Visible-light photocatalysis in nitrogen-doped titanium. Science 293, 2001, 269–271.
  • [61] Morikaw, T., Asahi R., Ohwaki T., Aoki K., Taga Y.: Band-gap narrowing of titanium dioxide by nitrogen doping, Jpn. J. Appl. Phys. 40, 2001, L561–L563.
  • [62] Ihara T., Miyoshi M., Iriyama Y., Matsumoto O., Sugihara S.: Visible-light-active titanium dioxide photocatalyst realized by an oxygen-deficient structure and by nirogen doping, Appl. Catal. B: Environ. 42, 2003, 403–409.
  • [63] Irie H, Watanabe Y., Hashimoto K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2–xNx powders, J. Phys. Chem. B., 107, 2003, 5483–5486.
  • [64] Liu Y., Chen X., Li J., Burda C.: Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere 61, 2005, 11–18.
  • [65] Kosowska B., Mozia S., Morawski A. W., Grzmil B., Janus M., Kałucki K.: The preparation of TiO2-nitrogen doped by calcination of TiO2•xH2O under ammonia atmosphere for visible light photocatalysis, Sol. Energy Mater. Sol. Cells 88, 2005, 269–280.
  • [66] Umebabayashi T., Yamaki T., Itoh H., Asai K.: Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 81, 2002, 454–456.
  • [67] Ohno T, Mitsui T., Matsumura M.: Photocatalytic activity of S-doped TiO2 photocatalyst under visible light, Chem. Lett., 32, 2003, 364–365.
  • [68] Li Y., Hwang D. S., Lee N. H., Kim S. J.: Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett. 404, 2005, 25–29.
  • [69] Janus M., Morawski A. W.: New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition, Appl. Catal. B 75, 2007, 118–123.
  • [70] Park J. H., Kim S., Bard A. J.: Novel carbon-doped TiO2 nanotube arrays with hight aspect ratios for efficient solar water splitting, Nano Letters 6, 2006, 24–28
  • [71] Moon S. C., Mametsuka H., Tabata S., Suzuki E.: Photocatalytic production of hydrogen from water using TiO2 and B/TiO2, Catal. Today 58, 2000, 125–132.
  • [72] Yu J. C., Zhang L., Zheng Z., Zhao J.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity, Chem. Mater. 15, 2003, 2280–2286.
  • [73] Korosi L., Dekany I.: Preparation and investigation of structural and photocatalytic properties pof phosphate modified titanium dioxide, Colloids Surf., A 280, 2006, 146–154.
  • [74] Prochazka J., Spitler T.: Highly photocatalytic phosphorus-doped anatase-TiO2 composition and related manufacturing methods, 2007, Pat. Appl. WO2007024917.
  • [75] Yu J. C., Yu J., Ho W., Jiang Z., Zhang L.: Effects of F– doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater., 14, 2002, 3808–3816.
  • [76] Hong X., Wang Z., Cai W., Lu F., Zhang J., Yang Y., Ma N., Liu Y.: Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem. Mater., 17, 2005, 1548–1552.
  • [77] Nakamura I., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K.: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A. Chem. 161, 2000, 205–212.
  • [78] Lobedank J., Bellmann E., Bendig J.: Sensitized photocatalytic oxidation of herbicides using natural sunlight, J. Photochem. Photobiol. A: 108, 1997, 89–93.
  • [79] Zhang F., Zhao J., Zang L., Shen T., Hidaka H., Pelizzetti E., Serpone N.: Photoassisted degradation of dye pollutants in aqueous TiO2 dispersion under irradiation by visible light, J. Mol. Catal. A: Chem 120, 1997, 173–178.
  • [80] Li F. B., Li X. Z.: The enhancement of photodegradation efficiency using Pt-TiO2 catalyst, Chemosphere 48, 2002, 1103–1111.
  • [81] Yamashita H., Harada M., Misaka J., Takeuchi M., Neppolian B., Anpo M.: Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalyst: Fe-ion implanted TiO2, J. Catal. Today 84, 2003, 191–196.
  • [82] Zhang X., Zhang F., Chan K. Y.: The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties, Mater. Chem. Phys. 97, 2006, 384–389.
  • [83] Cho Y., Choi W., Lee C., Hyeon T., Lee H.: Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2, Environ. Sci Technol. 35, 2001, 966–970.
  • [84] Ho W., Yu J. C., Lee S.: Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, J. Solid State Chem. 179, 2006, 1171–1176.
  • [85] Choi W., Termin A., Hoffmann M. R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98, 1994, 13669–13679.
  • [86] Shockley W., Read W. T. Jr: Statistics of the recombinations of holes and electrons, Phys Rev. 87, 1952, 835–842.
  • [87] Cronemeyer D. C.: Infrared absorption of reduced rutile TiO2 single crystals, Phys. Rev. 113, 1959, 1222–1226.
  • [88] Sakata T., Kawai T. (red. M. Grätzel): Energy resources through photochemistry and catalysis, New York: Academic Press 1983.
  • [89] Asahi R., Morikawa T.: Nitrogen complex species and its chemical nature in TiO2 for visible–light sensitized photocatalysis, Chem. Phys. 339, 2007, 57–63.
  • [90] Tanaka Y., Suganuma M.: Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline TiO2, J. Sol-Gel Sci. Technol. 22, 2001, 83–89.
  • [91] Mills A., Davies R. H., Worsley D.: Water-purification by semiconductor photocatalysis, Chem. Soc. Rev., 22, 1993, 417–425.
  • [92] Mills A., Morris S., Davies R. J.: Photomineralisation of 4-chlorophenol sensitised by titanium dioxide: a study of the intermediates, J. Photochem. Photobiol. A 70, 1993, 183–191.
  • [93] Martin S. T., Morrison C. L., Hoffmann M. R., Photochemical mechanism of size-quantized vanadium-doped TiO2 particles, J. Phys. Chem., 98, 1994, 13695–13704.
  • [94] Mihaylov B. V., Hendrix J. L., Nelson J. H. J.: Comparative catalytic activity of selected metal oxides and sulfides for the photo-oxidation of cyanide, J. Photochem. Photobiol. A 72, 1993, 173–177.
  • [95] Karakitsou K. E., Verykios X. E. J.: Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, Phys. Chem. 97, 1993, 1184–1189.
  • [96] Othani B., Nishimoto S. J.: Effect of surface adsorptions of aliphatic alcohols and silver ion on the photocatalytic activity of titania suspended in aqueous solutions, Phys. Chem. 97, 1993, 920–926.
  • [97] Onishi H., Iwasaka Y.: Dynamic visualization time-resolved observation by of a metal-oxide-surface/gas-phase reaction: scanning tunneling microscopy at 800 K, Phys. Rew. Lett. 76, 1996, 791
  • [98] Onishi H., Iwasawa Y.: STM-imaging of formate intermediates adsorbed on a TiO2(110) surface, Chem. Phys. Lett. 226, 1994, 111–114.
  • [99] Onishi H., Iwasaka Y.: Observation of anisotropic migration of adsorbed organic species using nanoscale patchworks fabricated with a scanning tunneling microscope, Langmuir 10, 1994, 4414–4416.
  • [100] Onishi H., Yamaguchi Y., Fukui K., Iwasaka Y.: Temperature-jump STM observation of reaction intermediate on metal-oxide surfaces, J. Phys. Chem. 100, 1996, 9582–9584.
  • [101] Sawunyama P., Jiang L., Fujishima A., Hashimoto K.: Photodecomposition of a Langmuir-Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. J. Phys. Chem. B. 101, 1997, 11000–11003.
  • [102] Sawuynama P., Fujishima A., Hashimoto K.: Photocatalysis on TiO2 surfaces investigated by atomic force microscopy: photodegradation of partial and full monoloyers of stearic acid on TiO2(110), Langmuir 15, 1999, 3551–3556.
  • [103] Gameiro C. G., Alves S. Jr. da Silva E. F. Jr., Achete C. A., Simao R. A., Santa-Cruz P. A.: Atomic force microscopy – a visual probe to characterize nanodosimetric devices. Mater. Charact. 50, 2003, 109–116.
  • [104] Bearinger J. P., Orme C. A., Gilbert J. L.: Direct observation of,hydratation of TiO2 on Ti using electrochemical AFM: freely corroding versus potentiostatically held, Surf. Sci. 491, 2001, 370–387.
  • [105] Lu G., Linsebigler A., Yates J. T. Jr.: Photooxidation of CH3Cl on TiO2(110): a mechanism not involving H2O, J. Phys. Chem. 99, 1995, 7626–7631.
  • [106] Wong J. C. S., Linsebinger A., Lu G., Fan J., Yates J. T. Jr.: Photooxidation of CH3Cl on TiO2(110) single crystal and powdered TiO2 surfaces, J. Phys. Chem., 99, 1995, 335–344.
  • [107] Idriss H., Légare P., Maire G.: Dark and photoreactions of acetates on TiO2(110) single crystal surface, Surf. Sci. 515, 2002, 413–420.
  • [108] Zaleska A., Nalaskowski J., Hupka J., Miller J. D.: Photodegradation of lauric acid on an anatase single crystal studied by atomic force microscopy, Appl. Catal. B, 2008, 10.1016/j.apcatb.2008.10.020
  • [109] Nalaskowski J., Zaleska A., Hupka J., Miller J. D.: Zastosowanie AFM do oceny przebiegu fotokatalizy heterogenicznej. Materiały III Seminarium STM/AFM 2004, 1–5 grudnia 2004, Zakopane, U–14, 2004.
  • [110] Nalaskowski J., Zaleska A., Janczarek M., Hupka J., Miller J. D.: Photodegradation at titanium dioxide surface studied by atomic force microscopy. (Materiały) International Symposium on Surface Imaging/Spectroscopy at the Solid/Liquid Interface, Krakow, Poland 28 May – 1 June, 2006, 110–111.
  • [111] Zaleska A.: Badania własne niepublikowane.
  • [112] Crist B. V.: Handbook of Monochromatic XPS Spectra – The Elements and Native Oxides. Chichester: John Wiley & Sons, 2000.
  • [113] Knobler C. M.: Seeing phenomena in flatland: studies of monolayers by fluorescence microscopy, Science 249, 1990, 870–874.
  • [114] Urban P., Idzikowski B., Kostyrya S., Andrzejewski B., Vértesy Z., Grains size distribution and thermal stability of surfactant stabilized Fe3O4-based magnetic fluid, Czech. J. Phys. 54, 2004, 683–686.
  • [115] Zorbas V., Kanungo M., Bains S. A., Mao Y.: Current-less photoreactivity catalyzed by functionalized AFM tips, Chem. Comm. 2005, 4598–4600.
  • [116] Rajca A.: Spektroskopowe metody badania struktury związków organicznych. Gliwice: Wydawnictwo Politechniki Śląskiej 1991.
  • [117] Linsebigler A. L., Lu G., Yates J. T.: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 1995, 735–758.
  • [118] Wahlstrom E., Vestergaard E. K., Schaub R., Ronnau A., Vestergaard M., Lægsgaard E., Stensgaard I., Besenbacher F.: Electron transfer-included dynamics of oxygen molecules on the TiO2(110) surface, Science 303, 2004, 511–513.
  • [119] Lu. G., Linsebigler A. L., Yates J. T. Jr.: CO photooxidation on TiO2(110), J. Phys. Chem. 100, 1996, 6631–6636.
  • [120] Wong J. C. S., Linsebigler A. L., Lu G., Fan J., Yates J. T. Jr.: Photooxidation of CH3Cl on TiO2(110) single crystal and powderes TiO2 surfaces, J. Phys. Chem. 99, 1995, 335–344.
  • [121] Diwald O., Thompson T. L., Zubkov T., Goralski E. G., Walck S. D., Yates J. T. Jr.: Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light, J. Phys. Chem. B 108, 2004, 6004–6008.
  • [122] Kobayakawa K., Murakami Y., Sato Y.: Visisble-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea, J. Photochem. Photobiol. A: 170, 2005, 177–179.
  • [123] Burda C., Lou Y., Chen X., Samia A. C. S., Stout J., Gole J. L.: Enhanced nitrogen doping in TiO2 particles, Nano Letters 3, 2003, 1049–1051.
  • [124] Xu T., Song C., Liu Y., Han G.: Band structure of TiO2 doped with N, C and B, Joural of Zhejiang University Science B 7, 2004, 299–303.
  • [125] Ceperley D. M., Alder B. J.: Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45, 1980, 566–569
  • [126] Perdew J. P., Zunger A.: Self interaction correlation to density-functional approximations for many – electron systems, Phys. Rev. B 23, 1981, 5048–5079.
  • [127] Perdew J. P., Burke K., Ernzerof M.: Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 1996, 3865–3868.
  • [128] Chen C., Bai H., Chang S., Chang C., Den W.: Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources, J. Nanopart. Res. 9, 2007, 365–375.
  • [129] Sato S., Nakamura R., Abe S.: Visible Light sensitization of TiO2 photocatalysts by wet-method N doping, Appl. Catal. A 284, 2005, 131–137.
  • [130] Silveyra R., De La Torre Saenz L., Flores W. A., Martinez V. C. Elguezabal A. A.: Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation, Catal.Today 107–108, 2005, 602–605.
  • [131] Kosowska B., Mozia S., Morawski A. W., Grzmil B., Janus M., Kałucki K.: The preparation of TiO2-nitrogen doped by calcination of TiO2•xH2O under ammonia atmosphere for visible light photocatalysis, Sol. Energy Mater. Sol. Cells 88, 2005, 269–280.
  • [132] Sano T., Negishi N., Koike K., Takeuchi K., Matsuzawa S.: Preparation of a visible light-responsive photocatalyst froma complex of Ti4+ with a nitrogen-containing ligand, J. Mater. Chem. 14, 2004, 380–384.
  • [133] Reddy M. K., Baruwati B., Jayalakshmi M., Mohan Rao M., Monorama S. V.: S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study, J. Solid State Chem. 178, 2005, 3352–3358.
  • [134] Nosaka Y., Matsushita M., Nishino J., Nosaka A. Y.: Nitrogen-doped titanium dioxide photocatalysts for visible light response prepared by using organic compounds, Sci. Technol. Adv. Mater. 6, 2005, 143–148.
  • [135] Kunz A. B.: Electronic polarons in nonmetals, Phys Rev. B 6, 1972, 606–615.
  • [136] Perdew J. P.: Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities, Phys. Rev. Lett. 61, 1983, 1884–1887.
  • [137] Di Valentin C., Pacchioni G., Selloni A.: Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B, 70, 2004, 085116-1 – 085116-4.
  • [138] Suda Y., Kawasaki H., Uea T., Ohshima T.: Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method, Thin Solid Films 453–453, 2004, 162–166.
  • [139] Torres G. R., Lindgren T., Lu J., Granqvist S. E., Lindquist S. E.: Photoecelctrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B 108, 2004, 5995–6003.
  • [140] Pore V., Heikkila M., Ritala M., Leskela M., Areva S.: Atomic layer deposition of TiO2–xNx thin films for photocatalytic application, J. Photochem. Photobiol. A 177, 2006, 68–75.
  • [141] Irie H., Washizuka S., Yoshino N., Hashimoto K.: Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films, Chem. Commun., 2003, 1298–1299.
  • [142] Yu J., Zhou M., Cheng B., Zhao X.: Preparation, characterization and photocatalitic activity of in situ N, S-codoped TiO2 powders. J. Mol. Catal. A: Chem. 246, 2006, 176–184.
  • [143] Takeshita K., Yamakata A., Ishibashi T., Onishi H., Nishijima K., Ohno T.: Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2, J. Photochem. Photobiol. A 177, 2006, 269–275.
  • [144] Yamamoto S., Takeyama A., Yoshikawa M.: Characterization of sulfur-doped TiO2 films by RBS/C. Nucl. Instrum. Methods Phys. Res., Sect. B 242, 2006, 377–379.
  • [145] Umebayashi T., Yamaki T., Tanaka S., Asai K: Visible light-induced degradation of methylene blue on S-doped TiO2, Chem. Lett. 32, 2003, 330–331.
  • [146] Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A 265, 2004, 115–121.
  • [147] Demeestere K., Dewulf J., Ohno T., Salgado P. H., Van Langenhove H.: Visible light mediated photocatalytic degradation of gaseous thichloroethylene and dimethyl sulfide on modified titanium dioxide. Appl. Catal. B 61, 2005, 140–149.
  • [148] Tachikawa T., Tojo S., Kawai K., Endo M., Fujitsuka M., Ohno T., Nishijima K., Miyamoto Z., Majima T.: Photocatalytic oxidation reactivity of holes in the sulphur- and carbon-doped TiO2 powders studied by time resolved diffuse reflectance spectroscopy, J. Phys. Chem. B 108, 2004, 19299–19306.
  • [149] Nakamura R., Tanaka T., Nakato Y.: Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes, J. Phys. Chem. B 108, 2004, 10617.
  • [150] Katoh M., Aihara H., Hrikawa T., Tomida T.: Spectroscopic study for photocatalytic decomposition of organic compounds on titanium dioxide containing sulphur under visible light irradiation, J. Colloid Interface Sci. 298, 2006, 805–809.
  • [151] Khan S. U. M., Al-Shahry M., Ingler W. B. Jr.: Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297, 2002, 2243–2245.
  • [152] Bacsa R., Kiwi J., Ohno T., Albert P., Nadtochenko V.: Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light, J. Phys. Chem. B 109, 2005, 5994–6003.
  • [153] Wang J., Zhang Q., Yin S., Sato T., Saito F.: Raman spectroscopic analysis of sulphur-doped TiO2 by co-grinding with TiS2, J. Phys. Chem. Solids 68, 2007, 189–192.
  • [154] Sen S., Ram M. L., Roy S., Sarkar B. K.: The structural transformation of anatase TiO2 by high-energy vibrational ball milling, J. Mater. Res. 14, 1999, 841–848.
  • [155] Takeshita K., Yamakata A., Ishibashi T., Onishi H., Nishijima K., Ohno T.: Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2, J. Photochem. Photobiol. A: 177, 2006, 269–275.
  • [156] Zaleska A., Colussi A. J, Balcersky W., Hoffmann M. R.: Visible light-activated TiO2 photocatalysts. (Materiały) International Conference on Photochemical Conversion and Storage of Solar Energy IPS-15, 4–9 July 2004, Paris, France, 2004, W6–O–11.
  • [157] Zaleska A., Górska P., Kowalska E., Hupka J.: Visible light-enhanced degradation of phenol in the presence of modified TiO2, Polish J. Chem. Technol. 8, 2006, 101–105.
  • [158] Górska P., Czoska A., Zaleska A., Hupka J.: Preparation of TiO2-based catalyst modified with thioacetamide and thiourea for visible light photocatalysis, (Materiały) 4th International Conference Oils and Environment, AUZO 2005, 20–23 June 2005, Gdansk, Poland, 2005, 375–380.
  • [159] Zaleska A., Górska P., Hupka J.: Visible light activity of TiO2 modified with thioacetamide and thiourea, (Materiały) The First International Meeting on: Photochemistry, Photocatalysis and their Environmental Applications, 29–31 March 2006, Agadir, Maroko, 2006, 20.
  • [160] Górska P., Kowalska E., Zaleska A., Hupka J.: Visible light activity of TiO2 modified with Thioacetamide. (Materiały) The Second European Conference on Oxidation and Reduction Technologies for Ex-situ and In-situ Treatment of Water, Air and Soil ECOR-2, Gottingen, Germany, 12–15 June 2005, 191–192.
  • [161] Zaleska A., Górska P., Sobczak J. W., Hupka J.: Thioacetamide and thiourea impact on visible light activity of TiO2, Appl. Catal. B 76, 2007, 1–8.
  • [162] Grzybowska B.: Effect of doping of TiO2 supported with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia-titania catalysts, Appl. Catal. A, 2002, 230, 1–10.
  • [163] Bielański, A.: Podstawy chemii nieorganicznej. Warszawa: PWN 1999.
  • [164] Tryba, B.: Mechanism of phenol decomposition on Fe-C-TiO2 and Fe-TiO2 photocatalysts via photo-fenton process. (Materiały) 4th International Conference Oils and Environment, AUZO 2005, 20–23 June 2005, Gdansk, Poland, 2005, 348–355.
  • [165] Czoska A.: Przygotowanie i charakterystyka fotokatalizatora aktywowanego pod wpływem światła widzialnego. Praca magisterska. Kierownik pracy dyplomowej A. Zaleska. Polit. Gdańska, Wydz. Chemiczny 2005.
  • [166] Mackay D.: The Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol. 4, Nitrogen and Sulfur Containing Compounds and Pesticides, Boca Raton: CRC Taylor & Francis, 2006.
  • [167] Hupka J., Zaleska A., Janczarek M., Kowalska E., Górska P., Aranowski R.: UV/VIS light-enhanced photocatalysis for ground water treatment and protection, Nato Science Series: IV: Earth and Environmental Sciences, Vol. 69. (Red. I. Twardowska, H. E. Allen, M. M. Häggblom, S. Stefaniak), Springer 2006, 351–367,.
  • [168] Tseng Y., Kuo C., Huang C., Li Y., Chou P., Cheng C., Wong M.: Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity, Nanotechnology 17, 2006, 2490–2497.
  • [169] Sanjines R., Tang H., Berger H., Gozzo F., Margaritondo G., Levy F.: Electronic structure of anatase TiO2 oxide, J. Appl. Phys. 75, 1994, 2945–2951
  • [170] Jensen H., Soloviev H., Li Z., Sogaard E. G.: XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Appl. Surf. Sci. 246, 2005, 239–249.
  • [171] Liqiang J., Xiaojun S., Weimin C., Zili X., Yaoguo D., Honggang F.: The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity, J. Phys. Chem. Solids 64, 2003, 615–623.
  • [172] Natsuhara H., Ohashi T., Ogawa S., Yoshida N, Itoh T., Nonomura S., Fukawa M., Sato K.: Thin Solid Films 430, 2003, 253–256
  • [173] Janus M., Inagaki M., Tryba B., Toyoda M., Morawski A. W.: Carbon-modified TiO2 photocatalyst by ethanol carbonisation, Appl. Catal. B 63, 2006, 272–276.
  • [174] Lettmann C., Hildebrand K., Kisch H., Macyk W., Maier W.: Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst, Appl. Catal. B 32, 2001, 215–227.
  • [175] Kisch H.: Large and small scale photoredox reactions catalyzed by sulfide and oxide semiconductors with visible light. (Materiały) Second International Conference on Semiconductor Photochemistry, Aberdeen, Scotland, 23–25 July 2007, K12.
  • [176] Geng H., Yin S., Yang X., Shuai Z., Liu B. Geometric and electronic structures of the boron-doped photocatalyst TiO2, J. Phys.: Condens. Matter 18, 2006, 87–96.
  • [177] Chen D., Yang D., Wang Q., Jiang Z.: Effect of boron doping on photocatalytic activity and microstructure of titanium dioxide particles, Ind. Eng. Chem. Res. 45, 2006, 4110–4116.
  • [178] Zhao W, MA W., Chen. C., Zhao J., Shuai Z.: Efficient degradation of toxic pollutants with Ni2O3/TiO2–xBx under visible irradiation, A. Am. Chem. Soc. 126, 2004, 4782–4783.
  • [179] Yu J. C., Yu J., Ho W., Jaing Z., Zhank L.: Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Matter. 14, 2002, 3808–3816.
  • [180] Carp O., Huisman C. L., Reller A.: Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32, 2004, 33–177.
  • [181] Zaleska A., Sobczak J. W., Grabowska E., Hupka J.: Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light, Appl. Catal. B 78, 2007, 92–100.
  • [182] Grabowska E., Zaleska A., Hupka J.: Preparation and photocatalytic activity of B-doped titanium dioxide. (Materiały) Surfactants and Dispersed Systems in Theory and Practice SURUZ 2007, Książ, Poland, 22–24 May 2007, 291–294.
  • [183] Zaleska A., Grabowska E., Sobczak J. W., Hupka J.: reparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. (Materiały) Second International Conference on Semiconductor Photochemistry, Aberdeen, UK, 23–25 July 2007, P109.
  • [184] Zaleska A., Hupka J., Grabowska E.: Sposób otrzymywania fotokatalizatora tytanowego aktywnego w świetle widzialnym, 2008, Zgł. Pat. P385901.
  • [185] In S., Orlov A., Berg R., Garcia F.: Pedrosa-Jimenez S., Tikhov M. S., Wright D. S., Lambert R. M.: Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts, J. Am. Chem. Soc. Commun., 2007.
  • [186] Karge H. G., Lange J. P, Gutsze A., Łaniecki M.: Coke formation through the reaction of olefins over hydrogen mordenite II. In situ EPR measurements under on-stream conditions, J. Catal. 114, 1988, 144–152.
  • [187] Tryba B., Tsumura T., Janus M., Morawski A.W., Inagaki M.: Carbon-coated anatase: adsorption and decomposition of phenol in water, 2004, Appl. Catal. B: 50, 177–183.
  • [188] Janus M., Tryba B., Inagaki M., Morawski A. W.: New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2, 2004, Appl. Catal. B: 52, 61–67.
  • [189] Irie H., Watanabe Y., Hashimoto K.: Carbon-doped anatase TiO2 powders on a visible-light sensitive photocatalyst, 2003, Chem. Lett. 23, 772–773.
  • [190] Sakthivel S., Kisch H.: Daylight photocatalysts by carbon-modified titanium dioxide, 2003, Angew. Chem. Int. Ed. 42, 4908–4911.
  • [191] Górska P., Zaleska A., Kowalska E., Klimczuk T., Sobczak J. W., Skwarek E., Janusz W., Hupka J.:, TiO2 photoactivity in Vis and UV light: the influence of calcination temperature and surface properties, Appl. Catal. B 84, 2008, 440–447.
  • [192] Górska P., Zaleska A., Suska A., Hupka J.: Photocatalytic activity and surface properties of carbon-doped titanium dioxide, Physicochem. Problems Min. Proc. 43, 2009, 21–30.
  • [193] Sun C., Hong B.-Y., Tseng C.-M,: Sol-gel preparation and photocatalysis of titanium dioxide, Catal. Today 96, 2004, 119–126.
  • [194] Wetchakun N., Phanichphant S.: Effect of temperature on the degree of anatase-rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol-gel method, Curr. Appl. Phys. 8, 2008, 343–346.
  • [195] Yu J., Zhao X., Zhao Q.: Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films 379, 2000, 7–14.
  • [196] Kisch H.: Second International Conference on Semiconductor Photochemistry, Aberdeen, UK, 23–25 July 2007,
  • [197] Zaleska A.: Characteristics of doped-TiO2 photocatalysts, Physicochem. Problems Min. Proc. 2, 2008, 211–222.
  • [198] Zaleska A., Górska P., Grabowska E., Sobczak J. W., Gazda M., Hupka J.: Visible light photo-activity and structure of doped TiO2. (Materiały) 5th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications, SPEA5, Palermo, Sicilia, Italy, 4–8 October 2008, PP1.25.
  • [199] Zaleska A., Doped-TiO2: A review, Recent Patents on Engineering, 2, 2008, 157–164.
  • [200] Ranjit K. T., Willner I., Bossmann S., Braun A.: Iron (III) phthalocyanide-modified titanium dioxide: A novel photocatalyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B 102, 1998, 9397–9403.
  • [201] Herrmann J. M., Guillard C., Disdier J., Lehaut C., Malato S., Blanco J.: New industrial titania photocatalysts for the solar detoxification of water containing various pollutants, Appl.Catal. B: 35, 2002, 281–294.
  • [202] Zaleska A.: Fotodegradacja zanieczyszczeń olejowych w obecności tlenku tytanu(IV), Przegląd Komunalny 9, 2001, 101–102.
  • [203] Wittenberg R., Pradera M. A. Navio J. A.P: Cumene photooxidation over powder TiO2 catalyst, Langmuir 13, 1997, 2373–2379.
  • [204] Minero C., Pelizzetti E.: Reaction of hexafluorobenzene and pentafluorophenol catalyzed by irradiated TiO2 in aqueous suspentions. Langmuir 10, 1994, 692–698.
  • [205] Calza P., Minero C., Pelizzetti E.: Photocatalytically assisted hydrolysis of chlorinated methanes under anaerobic conditions, Environ. Sci. Technol. 31, 1997, 2198–2203.
  • [206] Hilgendorff M., Hilgendorff M., Bahnemann D. W.: Mechanisms of photocatalysis: The reductive degradation of tetrachloromethane in aqueous titanium dioxide suspensions, J. Adv. Oxid. Technol. 1, 1996, 35–43.
  • [207] Pruden A. L., Ollis D.: Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water, J. Catal. 82, 1983, 404–417.
  • [208] Hupka J., Zaleska A., Artuna E., Bokotko R., Tyszkiewicz H., Biziuk M.: Photocatalytic degradation of almost non-soluble organics in gas sparged reactor. (Materiały) U.S. United Engineering Foundation Conference Environmental Technology for Oil Pollution, AUZO ’99, Jurata, Poland, 29.08–03.1999, Vol. 2, 1999, 37–42.
  • [209] Zaleska A., Hupka J., Wiergowski M., Biziuk M.: Photocatalytic degradation of lindane, p,p’-DDT and methoxychlor in aqueous environment, J. Photochem. Photobiolog., A 135, 2000, 213–220.
  • [210] Hasegawa K., Kanbara T., Kagaya S.: Photocatalyzed degradation of agrochemicals in TiO2 aqueous suspensions. Denki Kagaku 66, 1998, 625–634.
  • [211] Tyszkiewicz H., Biziuk M., Hupka J., Zaleska A., Artuna E.: Determination of organochlorine pesticides during degradation in gas-spared reactor. Chem. Inż. Ekol., 2001, 8, 941–946.
  • [212] Tyszkiewicz H., Biziuk M., Zaleska A., Hupka J.: Balance of Pesticide Mass in Gass, Liquid and Solid phase during their Chemical Degradation, Chem. Inż. Ekol., 12, 2004, 1377–1381.
  • [213] Chiarenzelli J. R., Scrudato R. J., Rafferty D. E., Wunderlich M. L., Roberts R. N., Pagano J. J., Yates M.: Photocatalytic degradation of simulated pesticides rinsates in water and water+soil matrices, Chemosphere 30, 1995, 173–185.
  • [214] Suzuki Y., Warsito, Arakawa H., Maezawa A., Uchida S.: Ultrasonic enhancement of photo-catalytic oxidation of surfactant, Int. J. Photoenergy 1, 1999, 61–64.
  • [215] Khali M. M. H., Abdel-Shafi A. A., Abdel-Mottaleb M. S. A.: Photocatalytic degradation of some toxic analytical reagents with TiO2, Int. J. Photoenergy 1, 1999, 85–88.
  • [216] Anandan S., Yoon M.: Photocatalytic degradation of Nile red using TiO2–β cyclodextrin colloids, Catal. Commun. 5, 2004, 271–275
  • [217] Morawski A. W., Janus M., Wawrzyniak B.: Sposób fotokatalitycznego rozkładu barwników w wodzie, 2005, Zgł. Pat. 373682
  • [218] Helz G. R., Zepp R. G. (red. D. G. Crosby): Aquatic and Surface Photochemistry, Lewis Publisher, 1994, 282–284
  • [219] Blanco-Galvez J., Fernandez-Ibanez P., Malato-Rodriguez S.: Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview, Trans. ASME 129, 2007, 4–16.
  • [220] Malato S., Blanco J., Richter C., Milow B., Maldonado M. I.: Pre-industrial experience in solar photocatalytic mineralization of real wastewaters. Application to pesticide container recycling. Wat. Sci. Tech. 40, 1999, 123–130.
  • [221] Bahnemann D., Dillert R., Dzengel J., Goslich R., Sawage G., Schumacher H. W.: Field studies of solar water detoxification using non light concentrating reactors. J. Adv. Oxid. Technol. 4, 1999, 11–19.
  • [222] Cooper A. T., Goswami Y. D., Block S. S.: Solar photochemical detoxification and disinfection for water treatment in tropical developing countries, J. Adv. Oxid. Technol. 3, 1998, 151.
  • [223] Fallmann H., Krutzler T., Bauer R., Malato S., Blanco J.: Applicability of the photo-Fenton method for treating water containing pesticides. Catal. Today 54, 1999, 309–319.
  • [224] Fallmann H., Krutzler T., Bauer R.: Detoxification of pesticides containing Effluents by solar driven Fenton process. Zeitschrift für Physikalische Chemie, Bd. 213, 1999, 67–743.
  • [225] Górska P., Zaleska A., Zabiegała B., Hupka J.: Photocatalytic degradation of toluene in gas phase. (Materiały) The Eighth International Conference on TiO2 Photocatalysis: Fundamentals & Applications, Montreal, Canada, 26–29 October 2003, 142–143.
  • [226] Kowalska E., Zaleska A.: Fotodegradacja w obecności TiO2 w fazie gazowej, Przegląd Komunalny 6, 2005, 76–77.
  • [227] Ohko Y., Hashimoto K., Fujishima A.: Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films, J. Phys. Chem. A. 101, 1997, 8057–8062.
  • [228] Ohko Y., Fujishima A., Hashimoto K.: Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass-transport-limited conditions with a TiO2 film photocatalyst. J. Phys. Chem. B 102, 1998, 1724–1729.
  • [229] Ohko Y., Tryk D. A., Hashimoto K., Fujishima A.: Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination, J. Phys. Chem. B, 102, 1998, 2699–2704.
  • [230] Miao L., Tanemura S., Kondo Y., Iwata M., Toh S., Kaneko K.: Microstructure and bactericidal ability of photocatalytic TiO2 thin films prepared by rf helicon magnetron sputtering, Appl. Surf. Sci. 238, 2004, 125–131.
  • [231] Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C., Dukan, S.: The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalysts and loss of membrane integrity, FEMS Microbiol. Lett. 258, 2006, 18–24.
  • [232] Kim B., Kim D., Cho D., Cho S.: Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere 52, 2003, 277–281.
  • [233] Lan Y., Hu C., Hu X., Qu J.: Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B: 73, 2007, 354–360.
  • [234] Kikuchi Y. Sunada K., Iyoda T., Hashomoto K., Fujishima A.: Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. A 106, 1997, 51–56.
  • [235] Sunada K., Kikuchi Y., Hashimoto K., Fujishima A.: Bactericidal and detoxification effects of TiO2 thin films photocatalysts, Environ. Sci. Technol. 32, 1998, 726–728.
  • [236] Yao K. S., Wang D. Y., Ho W. Y., Yan J. J., Tzeng K. C.: Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surf. Coat. Technol. 201, 2007, 6886–6888.
  • [237] Minabe T., Tryk D. A., Sawunyama P., Kikuchi Y., Hashimoto K., Fujishima A.: TiO2-mediated photodegradation of liquid and solid organic compounds, J. Photochem. Photobiol. A: 137, 2000, 53–62.
  • [238] Sitkiewicz S., Heller A.: Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass, New J. Chem., 1996, 233–242.
  • [239] Prochazka J.: Manufacturing of photocatalytic, antibacterial, selfcleaning and optically non-interfering surfaces on tiles and glazed ceramic products, 2007, Pat. Appl. US2007275168.
  • [240] Morawski A. W.: Sposób otrzymywania fotoaktywnych gipsów budowlanych o właściwościach samoczyszczących w promieniowaniu widzialnym, 2006, Zgł. Pat. 378896.
  • [241] Pilkington Plc (GB); Pilkington North America Inc (US): Process for the production of photocatalytic coatings on substrates, 2007, Pat. Appl. KR20070068488.
  • [242] Yamashita H., Shiga A., Kawasaki S., Ichihashi Y., Ehara S., Anpo M.: Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts, Energy Convers. Manag. 36, 1995, 617–620.
  • [243] Anpo M., Yamashita H., Ichichashi Y., Ehara S.: Photocatalytic reduction of CO2 with HO2 on various oxide catalysts, J. Electroanal. Chem. 396, 1995, 21–26.
  • [244] Kaneco S., Shimizu Y., Ohta K., Mizuno T.: Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger, J. Photochem. Photobiol. A: 115, 1998, 223–226.
  • [245] Kaneco S., Kurimoto H., Ohta K., Mizuno T., Saji A.: Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, J. Photochem. Photobiol. A 109, 1997, 59–63.
  • [246] Zaleska A., Aranowski R., Hupka J.: Sustainable development and heterogeneous photocatalysis. W: Oils and Fuels for Sustainable Development (Red. J. Hupka, R. Aranowski, Ch. Jungnickel, A. Tondarski). Sopot: Dom Produkcyjny 2008, 67–79.
  • [247] Janczarek M., Zaleska A., Hupka J.: Fotokonwersja CO2 do lekkich węglowodorów, Przegląd Komunalny 8, 2008, 78–80.
  • [248] Janczarek M., Dąbrowski ., Zaleska A., Hupka J.: Photocatalytic Detoxification of free Cyanides in Wastewater, (Materiały) First International Conference on Semiconductor Photochemistry SP-1, 23–25 July 2001, Glasgow, UK, 2001, 157.
  • [249] Dąbrowski B., Zaleska A, Janczarek M., Hupka J., Miller J. D.: Photo-oxidation of dissolved cyanide using TiO2 catalyst, J. Photochem. Photobiol. A: 151, 2002, 201–205
  • [250] Zaleska A., Stepnowski P.: Photodegradation of 1-alkyl-3-methylimidazolium ionic liquids. (Materiały) 15th International Conference on Photochemical Conversion and Storage of Solar Energy IPS-15, Paris, France, 4–9 July 2004, W6–P–59.
  • [251] Stepnowski P., Zaleska A.: Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids, J. Photochem. Photobiol., A: 170, 2005, 45–50.
  • [252] Morawski A. W., Janus M., Goc-Maciejewska I., Syguda A., Pernak J.: Decomposition of ionic liquids by photocatalysis, Polish. J. Chem. 79, 2005, 1929–1935.
  • [253] Hupka J., Zaleska A.: Fotochemiczna degradacja zanieczyszczeń w fazie wodnej. (Materiały) XX-th Jubilee-National, VIII-th International Scientific and Technical Conference “Water Supply and Water Quality”, Gniezno, Poland, 15–18 June 2008, Vol. Red. M. Sozański, Z. Dymaczewski, J. Jeż-Walkowiak). PZITS, Poznań 2008, 475–487.
  • [254] Hupka J., Zaleska A.: Fotoreaktor do oczyszczania ścieków sanitarno-bytowych oraz zęzowych zwłaszcza generowanych na małych i średnich jednostkach pływających lub platformach wiertniczych oraz sposób i układ do oczyszczania ścieków sanitarno-bytowych oraz zęzowych zwłaszcza generowanych na małych i średnich jednostkach pływających lub platformach wiertniczych, 2008, Zgł. Pat. P 385431.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0015-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.