Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a methodology to evaluate the technical state of a Francis turbine by shaft rotor dynamic simulation. There are several rotor dynamic criteria that define the technical state of a turbomachine. To feed the shaft rotor dynamic model this delivers the required information to accomplish the technical assessment. The numerical rotor dynamic model uses as input, the field forces obtained by the fluid-solid interaction analysis undertaken over the blades of the runner. The rotor dynamic numerical simulations allow to determinate the record-in-time of the displacements of any point along the shaft. This information is relevant for diagnosis tasks, because it is possible to decompose it spectrally and to estimate the severity of the vibrations. Comparing the results of the numerical model against those obtained from machines that operates under normal conditions, it is possible to determinate the technical state of the turbomachine. This allows studying the stability of the turbine working on several operation ranges. A Francis turbine is a very complex machine that involves many physical phenomena of different nature. In this way, the hydraulic input forces needed by the rotor dynamic model should not be assumed but calculated directly from the fluid interaction over the turbine structure.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
113--123
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
Bibliografia
- [1] Egusquiza, E. Nascimento, L.P. Valero, C. Jou, E. (1994) El diagnostico de daños en grupos hidroeléctricos mediante el análisis de vibraciones. Revista Ing. del agua Vol 1 Num 3.
- [2] Gagnon, J.M, Payette F.A. and Deschenes C. (2007). Numerical Simulation of a Rotor-Stator Unsteady Interaction in a Propeller Turbine. CFD Society of Canada, Toronto.
- [3] Guedes, A. Kueny, J.L. Ciocan, G. and Avellan, F. (2002). Unsteady rotor-stator analysis of a hydraulic pump-turbine – CFD and experimental approachl.
- [4] Proceedings of the XXIst IAHR symposium on hydraulic machinery and systems, Laussane, Switerland.
- [5] Hoffmann, K. (1989). An introduction to measurements using strain gages. Hottinger Baldwin Messtechnik GmbH, Darmstadt.
- [6] Menter F.R. (1994). Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal.
- [7] Nennemann, B. Vu, T. and Farhat, M. (2005). “CFD prediction of unsteady wicket gate-impeller interaction in Francis turbines: A new standard hydraulic design procedure. Waterpower XIV, Austin, USA.
- [8] Qian, Z. Yang, J. Huai, W. (2007). Numerical simulation and analysis of pressure fluctuation in Francis hydraulic turbina with air admisión. Journal of hydrodunamics.
- [9] Zobeiri, A. Kueny, J.L. Farhat, M. and Avellan, F. (2006). Pump turbine rotor-stator interactions in generating mode: pressure fluctuations in distributor channel. 23th IAHR symposiums, Yokohama, Japan.
- [10] Ciocan and others (2007). Experimental study and numerical simulation of the FLINDT draft tube rotating vortex. Journal of fluid dynamics. Vol 129.
- [11] Kicinski, J. (2006). Rotor dynamics. Institute of Fluid-Flow Machinery Polish Academy of Science, Gdańsk.
- [12] Gustavsson, R (2005). Modelling and Analysis of Hydropower Generator Rotors. Lulea University of Technology. The Polhem Laboratory. Division of Computer Aided Design.
- [13] Żółtowski B., Badania dynamiki maszyn, 2002, Bydgoszcz (Polonia), Akademia Techniczno - Rolnicza w Bydgoszczy, p. 337.ISBN 83-916198-3-4
- [14] Żółtowski B., Podstawy diagnostyki maszyn, 1996, Bydgoszcz (Polonia), Akademia Techniczno-Rolnicza w Bydgoszczy. ISBN 83-900853-9-9.
- [15] Żółtowski B., Cempel C., Inżynieria diagnostyki maszyn, 2004, Varsovia, Towarzystwo Diagnostyki Technicznej, Instytut Technologii Eksploatacji, pp. 1109.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0015-0015