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Abstract 

 
This work is an analysis of an accident that occurred in a warehouse during loading of a new multi-level storing 

frame. The frame was designed in a professional design office with aid of computer program. It is of great importance 
to carry out checking procedures at various steps of the computerized design process. In this article two different 
methods were applied in order to calculate the critical buckling force. Then the results were compared. The Euler’s 
and the Rayleigh’s method yielded convergent results. The both methods proved that the critical buckling force would 
be exceeded if the frame was fully loaded. Since the frame began to incline when it was loaded only in 80%, other 
reasons of buckling must also be considered. Although we can’t eliminate designer’s mistake, it is more probable, that 
the buckling resistance of the frame was reduced by inappropriate operation of hydraulic stackers. The photographs 
show that the construction was so tightly loaded with palettes, that the overloading was the most probable cause of the 
catastrophe. The bending moment originated during the loading process could also reduce the buckling resistance of 
the construction. 
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1. Introduction 
 

At present, development of computer technology and professional CAD/CAM codes the ability 
of applying appropriate design and simulation software is a constitutive part of engineering 
education. However, the practical use of this software requires a detailed training. A cursory study 
is not satisfactory and may lead to catastrophic consequences in operation of designed 
constructions. The analyzed case of collapsed multi-level frame for palettes storing shows that        
a stability analysis is an indispensable part of a design process. The majority of commercial civil 
engineering software includes modules of a stability analysis. Nevertheless, it is instructive to 
compare and evaluate most known and applied methods of stability and buckling analysis that may 
serve as a handy check of computerized design process. The other problem is an appropriate and 
strictly observed system of loading and unloading multi-level storing frames. It is essential for a 
safe life cycle operation of this type of construction to preserve the loading limits. When the 
maximum utilization of storing space of warehouses turns a main objective and substitutes a safety 
criterion, damage may be very extensive. 

The inspiration for the present work was collapsing and the total destruction of a multi-level 
storing frame that was 16,44 m long, 9,60 m deep and 8,00 m high.  The frame provided three 
levels for storing palettes. The construction consisted of u-channel bearing columns with tops 
connected by horizontal square section tubes. As it is shown in fig.1, the palettes were stored side 
by side without leaving any distance between them. Palettes stored with maximum concentration 



might cause an overloading of the construction. The other reason might be an inappropriate system 
of loading the construction with palettes. The loading and unloading of multi-level high storing 
frame was performed by telescopic hydraulic stackers. Operators controlled the process with help 
of camera and, in case of inattention; the forks of stacker might hit a bearing column and cause the 
loss of stability or deformation and local buckling of u-channel column.  

In the time of the catastrophe the frame was loaded in 80% with palettes of 7700 N unitary 
weight. The process of frame destruction, since the moment of light noticeable inclination of the 
first external span until the complete destruction, lasted about two hours. In order to preserve the 
content of the palettes stays between the frame and the building’s girders were installed. The static 
forces in the curved frame were so great, that the bearing columns began to crack. The enclosed 
picture (fig. 2.) shows the extension of destruction caused by buckling of bearing columns. 
 

 
 

Fig. 1. Palettes stored in the multi-level frame 
 

 
 

Fig. 2. Destroyed multi-level storing frame after collapsing 
 



2. Definition of construction stability and its analysis 
 

We consider a dynamic system described by set of regular differential equations:  
 

),( tyfy = .      (1) 
 

If the vectorial function f does not depend in explicit way from time t, then the system is 
stationary. Otherwise the system is nonstationary. Accepting the partial solution )(~ ty  of the 
above-mentioned equation as equation of undisturbed motion, and the remaining solutions y(t) as 
disturbed motion equations, we observe the evolution of disturbances )(~)( 00 tyty ii − , i = 1,…, m, 
for the initial moment t = t0. For so defined solutions Liapunov (1892) introduced the following 
definition of stability: 

Undisturbed motion )(~ ty  of system (1) we call stable in relation to variables y1, y2,…,ym if for 
every ε > 0 exists δ > 0 such, that for every solution y(t) of the system (1) satisfying condition 

δ<− )(~)( 00 tyty , inequity ε<− )(~)( tyty  is valid for every t ≥ t0  [1].  
According to the above-mentioned definition, small variations from the initial conditions 

remain finite in time for stable motion. Equations of disturbed motion we express by means of 
deviations )(~)()( tytytx iii −= . Substituting this equation to (1) and expanding the right side of the 
resulting equation into the Tylor series we receive the equation of disturbed motion in the vectorial 
form: 

),()( tt xxAx η+= ,     (2) 
 
where the coefficients jiij yfta ∂∂= /)(  are estimated for y= )(~ ty , and ηi are higher order 
derivatives from the Tylor expansion. Taking into account exclusively linear equation xAx )(t=  
we carry out a linearization of equation of disturbed motion.  

The linear analysis of stability called singular values method permits a determination of 
theoretical buckling resistance (the point of bifurcation) of the ideally linear elastic construction. 
However, imperfections and nonlinearities present in the majority of real constructions inflict, that 
buckling occurs before they achieve their theoretical buckling resistance. Therefore, in everyday 
engineering practice a nonlinear buckling analysis should be applied, which is available in 
professional engineering software. The finite element method (MES) is predominantly used in 
civil engineering software. The application of MES in stability analysis is clearly presented in [2]. 

However, the aim of this article is to present and compare methods that evaluate the 
correctness of computer procedures. The analyzed case of collapsed frame serves as an example. 
 
3. Euler’s method of buckling analysis 
 

Stability of steel structures is the essential safety criterion during their design and life cycle 
operation. The research on the structure stability dates from 1744, when Euler published his work 
on bar’s stability. The classical method of buckling analysis still bears his name. It is a simple 
method that assumes one of four buckling types. As it was noticed in the first paragraph the frame 
collapsed by inclination of the construction in the plane of figure 3. Since the tops of bearing 
columns were joined by horizontal square section tubes and the base of each column was fixed in 
the ground, we assume that in the analyzed case the first derivatives of deflection line equals zero 
at external points of each column. It is evident from fig. 3, that the buckling length of the column 
is the same as in the second Euler’s buckling type i.e. the buckling coefficient μ=1. As forces in 
the analyzed column are applied between nodes, we predict that the buckling coefficient of the 
column should be even less than one (μ<1). Fig. 3 presents the sketch of the analyzed frame. In the 



case of the internal column four palettes of the same level rest their corner on the same column 
(see fig. 1.). Therefore we admit that the single column is loaded with the weight of one palette on 
each level. 

 

 
 

Fig. 3. The scheme of the multi-level storing frame and its buckling model 
 

The geometrical data of u-shaped bearing columns are as follows: cross section area F = 3,48 
cm2, moment of inertia of the cross section Ix = 41,04 cm4, radius of inertia i = 3,43 cm.  

Stress of pure compression caused in the column by the loading 3Q amounts to: 
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The stress caused by buckling is greater than originated by pure compression. The measure of 

the column strain is the critical force it can support without buckling. The value of this critical 
force is given by the subsequent formula: 
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In this formula Lw is the buckling length of a column and it can be written as Lw = L·μ, where 

L is a real length of the column. For the adopted buckling type the value of buckling coefficient μ 
we calculate by means of the following formula: 
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where Q is the weight of a single palette and Qt is the total load of a column. Consequently the 
buckling length Lw = 0,805·8,0 = 6,44 m. The slenderness of a column is given by the formula: 
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The boundary slenderness we compute assuming the proportionality limit σprop = 235 MPa and 

elastic modulus E = 205·103 MPa: 
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Since the column slenderness is greater than boundary slenderness, we may use the Euler 

formula (3) to calculate the critical buckling force, which results Pkr = 19980 N. For the internal 
fully loaded column we have:  

 
Qt = 3Q = 23100 N > Pkr = 19980 N .    (7) 

 
The stability analysis carried out by Euler’s method reveals that the critical force Pkr for 

internal columns of the structure is exceeded. Treating the case more precisely, we notice that 38 
external columns are loaded only with forces P = Q/2 on each level and 4 corner columns only 
with forces P = Q/4 on each level. This slightly increases the stiffness of the frame. The critical 
force calculated for the whole structure approximately equals the total load of the frame.  

On the other hand the palettes, probably of varying weight, were stored side by side increasing 
the load of the single column. Applying the formula (4) was also an approximation. Concluding 
we may say, that the frame was in the state of boundary stability and any incorrectness in loading 
process might cause the buckling. Because of adopted approximations we also calculated the 
critical buckling force applying Rayleigh’s method. 
 
4. The Rayleigh’s method of stability analysis 
 

Our purpose is to check the stiffness of the frame against buckling. The analysed structure has 
in fact infinite number of degrees of freedom. To find the buckling criterion we may reduce the 
problem to a single column treated as a single degree of freedom (SDOF) system. This method is 
called Rayleigh’s method and it assumes, that during free vibrations a column adopts a single 
shape function ψ(x), changing only the amplitude A(t). So the function y(x) = ψ(x)·A(t) 
determines the position of all points of bearing column. Applying the boundary conditions of the 
deflection line of a column we assume the shape function in the following form: 
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Applying the principle of virtual work we formulate the equation of motion of generalized 

SDOF system: 
 

δWE = δWI ,     (9) 
 

where δWE is the virtual external work done by external loadings on their corresponding 
displacements. It includes the work of excitation force on palette’s mass (mQ), the work of 
palette’s inertia force on its displacement δy(xi) and the work of palette’s weight on its 



displacement δei. δW is the virtual internal work done by internal bending moments M(x, t) on 
their corresponding changes in curvature δy”(x). The analysed model is presented in fig. 4.  
 

 
 

Fig. 4. The model of bearing column as a generalized SDOF system 
 

In our model we neglect the weight of the frame elements supposing that they are much smaller 
than the weight of the palettes and we assume the constant stiffness of the columns EI. Now we 
may write the virtual external and internal work in the subsequent form: 
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In the generalized SDOF system we may write the following relations: 
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that are the consequence of adopting the shape function ψ(x). 

 According to the Euler-Bernouli hypothesis plane sections remain plane after deformation. We 
assume this hypothesis as well as the linear relation between damping stresses and strain velocity. 
Made assumptions lead to the following relation [3]: 
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where c is a damping constant.  
The displacements of buckling forces δei we calculate from the following relation [3]: 
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Finally the equation of motion of the column has the form: 
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where: 
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The column will lose its stability when the generalized stiffness equals zero, so the critical 
weight of one palette we calculate from the following relation: 
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Taking into account that x1 = L·6050/8000 = 0,75625·L, x2 = 0,5125L, x3 = 0,26875L we 

calculate the integrals of equation (16). Since we assumed the shape function in the form of (8), 
the results are as follows: 
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Substituting these results into (16) we receive: 
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Since the average palette’s weight is Q = 7700 N, the critical loading of the bearing column is 

exceeded. The total critical load of the column is 3Q = 20826 N. If we compare this result with (7), 
we note that the difference is about 3%. Unfortunately, both methods are approximate. In the case 
of Rayleigh’s method we had to assume a shape function. If the admitted shape function were the 
true one, the calculated critical buckling force would be the exact one too. Every shape function 
other than the true one yields greater critical buckling force. 

The shape function we admitted would be the true one if the loading was applied on the top of 
the column. Therefore, we may assume a sufficient correctness of our calculations. 
 
5. Conclusions 
 

The analysed multi-level storing frame was designed with aid of a professional computer 
program by experienced engineer. Therefore, the most probable cause of buckling of the 
construction was overloading (fig. 1.). 

The buckling of the frame began then the construction was loaded in 80%. This suggests that 
during the loading of the frame, the telescopic hydraulic stackers could hit any bearing column and 
cause the local buckling. 

Moving the palettes on the higher levels by hydraulic stackers also could produce a bending 
moment that contributes to the buckling. 
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