PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Influence of Turbulent Transition on Heat Transfer Conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with the turbulent transition phenomenon modelling and its influence on heat transfer. The purpose of the analyses was to verify the transition modelling implemented in the ANSYS CFX 11 commercial code for popular test cases (low flow speed) described in literature, and then use it for verification of the in-house CFD code (created for compressible flows). The inhouse CFD code has been extended lately for the Conjugate Heat Transfer modelling (CHT) as well, taking into account important flow effects, especially the turbulent transition. A Wilcox k-omega turbulence model with the Low-Reynolds modification was used in the in-house code. The calculations in ANSYS CFX were made using an SST turbulence model and a gamma-theta transition model. A fully turbulent flow was modelled by means of both codes, and the results were compared with the available experimental data. Then, the turbulent transition for several test cases was analysed with ANSYS CFX. Afterwards, the in-house CFD code was verified by means of ANSYS CFX for a higher flow speed (Mach numbers). The CHT modelling was analysed by means of both codes and the results were compared and discussed. The conducted analyses show that the results obtained by means of both codes are comparable, but the turbulence model used in the in-house CFD code is simpler and requires less computation time. A modification of two equations turbulence models can be an alternative for design problems in more developed laminar/turbulent flows.
Rocznik
Strony
173--184
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland, krzysztof.bochon@polsl.pl
Bibliografia
  • [1] Wilcox D C 1994 Turbulence Modelling for CFD, DCW Industries, Inc. La Canada, Ca.
  • [2] Langtry R and Sjolander S 2002 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit AIAA-2002–3643
  • [3] Wilcox D C 1994 AIAA J. 32 (2) 247
  • [4] Abe K, Kondoch T and Nagano Y 1997 Int. J. Heat Fluid Flow 18 266
  • [5] Palikaras A, Yakinthos K and Goulas A 2002 Int. J. Heat Fluid Flow 23 455
  • [6] Craft T, Launder B and Suga K 1996 Int. J. Numer. Methods Fluids 17 108
  • [7] Chen W, Lien F and Leschziner M 1998 Int. J. Heat Fluid Flow 19 297
  • [8] 2006 ANSYS CFX-Solver Modeling Guide, ANSYS CFX Release 11.0
  • [9] Menter F R, Langtry R B, Likki S R, Suzen Y B, Huang P G and Völker S 2004 ASME TURBO EXPO 2004, Vienna, Austria ASME-GT2004–53452
  • [10] Langtry R B, Menter F R, Likki S R, Suzen Y B, Huang P G and Völker S 2004 ASME TURBO EXPO 2004, Vienna, Austria ASME-GT2004–53454
  • [11] Langtry R B and Menter F R 2005 Transition Modeling for General CFD Applications in Aeronautics AIAApaper2005-522
  • [12] NPARC Alliance Verification and Validation Archive, http://www.grc.nasa.gov/WWW/wind/valid/archive.html
  • [13] ERCOFTAC benchmark, http://www.ercoftac.org/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0009-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.