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Abstract

The paper presents the preliminary investigatiofisnitric oxides (NOx) estimation from marine twoeke
engines. The Annex VI to Marpol Convention enféocship-owners necessity of periodical direct measients of
the NOx emission from the ship engines. It is v@xpensive procedure but with a low accuracy. Preskn
investigations show the possibility of estimatioa NOx emission without direct measurements bagubie artificial
neural network (ANN). The paper presents methodhafice the input data influenced on NOx emissiod an
configuration of ANN and effects of calculationkeTinput data poses 15 parameters of engine workirilgiencing
on NOx emission. The output data, necessary tmiegrthe network, were NOx concentration in engibaust
gases. We take into account two types of ANN; tlaye® perceptron (MLP) with number of neurons hie thidden
layer from 10 to 20 and the radial basis functicgural network (RBF) with number of neurons in thedien layer
from 10 to 80. The input, validation and verificati data was obtained from laboratory tests. Aftescedure of
network configuration, the chosen ANN was learngdéck propagation and conjugate gradient methdising
this operation the weights of neurons were chartgedinimize the root mean square error. We obtaifoed ANN'S,
which allow us to estimate the NOx emission frotvotatory engine with accuracy, comparable with Annd
regulations.
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1. Introduction

The nitric oxides (NOx) contained in exhaust gasesitted from ship engines causes’ high
level of health hazard. To prevent of sea enviramnfi®m this pollutant International Maritime
Organization introduced Annex VI to MARPOL 73/78ngention in 1997. This Annex forces
ship owners to limit nitric oxides emission fromskengines. The allowable level of this emission
is defined in NOx Technical Code [11]. Accordingttos Code, every introduced to operation
onboard engines above 130 [KW] are obligated toehtne valid certificate confirming the
acceptable NOx emission. If ship engines are stdgesome alterations during their operation
period, they will have to extend such a certificalis prolonging consists in checking of
parameters and structural parts of the engineanfling the NOx emission. Changes of engine
structural parameters could entail the necessitaafying out the direct onboard measurements of
the NOx emission. Usually, the standard equippegherrooms have not installed any appropriate
analyzer of exhaust gases. Therefore, such direecisarements lead to significant expenses for
ship owners. Moreover, these measurements hawe ¢arbed out for strictly determined points of
engine load. Such situation can also cause to vathidg the ship with operation in order to
perform these measurements, which are additiomaliyprecise. According to the NOx Technical
Code regulations, we can apply the simplified métdaring the onboard measurements. These
regulations allow us to overcome the acceptableldeof emission even about 10% comparing



with methods using on the shore. For the heavy, theke regulations allow to exceed this limit
even up to 15%.

In order to make these regulations more applicabbny research centers work on alternative
methods of nitric oxides estimations from onboapgrated diesel engines. Kyrtatos et al. [16]
proposes the software sensor for exhaust emissions estimatidod’sed on multi-zone
thermochemical model of nitric oxides formation agombustion chamber of the engine. This
sensor includes only Zeldovicz’'s model [10] of isitoxides creation. Developing this method of
nitric oxides estimation the mono-zone multi-comgaty thermochemical model was proposed
[14]. It's based on Konnov's model [13] and corsisf 724 reactions between 83 chemical
species. The conclusions formulated after researonethis model, shows enough accuracy of
nitric oxides estimation only for one engine. Moreq the complexity of nitric oxides formation
in combustion chamber of engine required very egpencomputational power, not onboard
accessible. According to this, it's necessary figdof the appropriate method, allowing to the
lowering of the costs of modeling without limitinger accuracy. Such method can be an
approximation of the NOx composition model, possitd calculation by the PC class computer.
The useful and universal approximator, being sistédthis aim, is the artificial neuronal network
(ANN). Proposed by Werbos method of ANN learning][Zalled the back propagation method,
allows using the ANN in the various fields of knedbe. Wang et al. [28], Oladsine et al. [20] and
Hafner et al. [8] uses ANN to control parametershef piston engines and Stephan et al. [25] to
control the power plant. Yang et al. [30] and Raha@adet al. [22] proposes use ANNs to modeling
of cetane number for blended fuels and Lee etlal] pse ANN to modeling of fuel spray
penetration in combustion chamber of the engine@ ANN was also applied to the lowering of
the costs of the modeling of the combustion proceastions [3], [5], [12], [24], [26] specific fuel
consumptions of the engine [23] and the temperattitiee combustion process [21].

Presented works shows, that using the ANNs is &ffe@nd not expensive alternative to
modeling of the combustion process parameters. Woog to this situation we would like to
propose a method of the NOx estimation from theoantb diesel engine based on the
measurements of working engine parameters likespres, temperatures, etc. Moreover, we
assume that these parameters measured in the rstaeglapped engine room are sufficient for
developing the mentioned method. This, in turn,unexs developing the appropriate model
connecting these parameters into a function allgviam assessing a level of the NOx emission. In
order to reduce the high cost of modeling theiardif neural network is proposed.

2. Formation of the NOx in combustion chamber of te engine

The main reason of nitric oxides formation is reatt of the nitrogen oxidization in
environment of high temperature and high pressaorea icombustion chamber. The nitrogen
oxidized in these reactions comes from air and foglcted to a cylinder. The process of the
nitrogen oxidation is reversible. Unfortunatelye thuickness of reactions opposite to the oxidation
is too low in conditions of the combustion chambercauses to release some parts of the nitric
oxides to atmosphere during the scavenging pradfessylinder. Long-term investigations of the
NOx formation carried out during a combustion psscef various flammable mixtures bring into
being many mechanisms allowing for estimating theoant of the emitted NOx. Basing on
thermal mechanism [9], we can state that the mmogortant parameter of this process is its
temperature. This statement is supported by restitgperimental investigations presented in [2].
According to conclusions contained in [7], the setanportant parameter is pressure of causing
for decreasing of NOx molar concentration. Invesimns of Lyle and al. [18], shows us the
considerable influence of relation between the motmcentration of fuel and air on the NOx
emission level. According to results of these stsdthe prompt mechanism predominates in rich
mixtures. After exceeding a stoichiometric air cemication in a mixture, the rapid growth of the



NOx concentration occurs due to a thermal mechadismination. However, the further increase
of the air concentration causes for decreasinghefNOx concentration due to decreasing the
combustion process temperature. Kuo [15] gives dégmendences between the fuel composition
and burning velocity, and the NOx concentrationcéding to results, a fuel molecular structure
depends on burning the velocity and NOx conceminatiut this dependence is ambiguous.

According to these considerations the most impogarameters influenced on NOx formation
are:

— Composition of burned mixture in the combustionrmabar,
— Time of combustion,

— Pressure of combustion,

— Temperature of combustion.

Values of these parameters are changed duringoth®ustion process in the engine cylinder.
Moreover, presented parameters couldn’t be measiuweidg sea operation of the engine. It
means that estimation of the NOx emission requireasurement some another parameters of the
engine working influencing on temperature, presstimge of combustion and composition of the
combusted mixture. The author’'s research demoasstrgt4], that measurement of the engine
parameters during the sea operation conditionseaoegh to the NOx emission estimation. The
prediction of NOx emission by the direct calculatimf NOx formation during combustion process
is very expensive and difficult process [1] [4],[$13], requiring large computational power not
attainable onboard. In this situation the diredtwation of the NOx formation to estimation of
the level of the emission onboard is problematio. e other hand properly learned neural
network, may be sufficient tool to assess the le¥¢he NOx emissions.

3. The preparing of the ANN’s

According to the ANN theory [19] the enter dataerted to the ANN model has to comply
appropriate requirements. The most important isnttual independence of the enter data. It
means that chosen entered data couldn’t influeack ether.

The earlier considerations show that the enter tathe ANN must represent the parameters
influenced on NOx formation in the combustion cham@he composition of the burned mixture
in the combustion chamber may to be estimated &ypé#nameters of the air and fuel at the inlet to
the engine and the parameters of the injectionesystWWe choose the following parameters:
temperature and humidity of the scavenging airafugel consumption of the engine. Dependence
between quantity of fuel and air in the combustbamber is represented by an air/fuel ratio.
Time of combustion is represented in enter datsg®ed of the engine and pressure of combustion
is represented by the mean cylinder pressure, @ieénmum cylinder pressure and the crankshaft
position at the maximum cylinder pressure. Tempeeadf the combustion process is represented
in enter data by parameters of the injection preicése maximum injection pressure, the
crankshaft position at the maximum injection pressand temperature of the fuel before the
injecting pump and temperature of the exhaustHas.cooling system of the engine influences on
temperature of combustion process that has wayitbesure and temperatures in the inlet and
outlet of the cooling system were added to therediéta. According to these considerations 15
independent parameters of the combustion procedsleen like the enter data to ANN.

The problem of NOx emission estimation from thesdleengine is classified as regressive
problem. General two types of ANN may to be usesidloe this class of problems. The first, most
popular, network is multilayer perceptron (MLP) [2ahd the second the radial basis function
network (RBF) [27].

During the investigations both, the MLP and RBFwuweks are considered. The networks
consist of 15 input neurons in input layer for Yiee data, one neuron in output layer for NOx
emission estimation and neurons in one hidden laylee number of neurons in the hidden layer



was changed from 10 to 20 for MLP network and frbéhto 80 in RBF network. The input,
validate, and the test data were collected durirgcdmeasurements on two stroke, one cylinder,
loop scavenged, laboratory engine. The 212 setats are collected to teaching the networks
after measurements. The cross validation was useduse of a small quantity of the data sets.
During the teaching process 162 data sets was migdassigned as the teaching data, 20 to
validation the networks, while the remaining 30 weasployed for verification the performance of
the ANN prediction. The logistic function as aniaation function was used and the data sets
before using were standardized to values from1 Ithe learning rate was set on 0,1.
The teaching process for all considered ANNs cossikfew stages:
— weights of all neurons were randomly assigned,
— inputs were presented to the input layer, and thput was calculated,
— weights were calculated by minimizing the erroback propagation process, this process
was repeated to assign all data sets,
— data sets were mixed and the second epoch wasdstart
— after 200 epochs weights were calculated by minmgithe error in the conjugate gradient
method by 500 epochs,
— the cross validation was used and repeated 5 times,

4. The description of the laboratory test

We have carried out the laboratory test using tingine L-22 installed in Gdynia Maritime
University laboratory. It is a crosshead, singlérder, and two-stroke diesel engine with loop
scavenging. Roots’ blower driven independently hyedectric motor with an infinitely variable
adjustment of rotational speed charges this engihe.tested engine is loaded by a water brake.
Basic parameters of the L-22 engine are presemieflab.1. and a schematic diagram of the
laboratory stand is presented in Fig.1.

The measuring equipment installed on the testechemermitted on the continuous recording
of the considered parameters of the engine withcqopately 0,5 second samplings.

Tab.1. Parameters of the test engine

Nominal Power [kW] 73,5
Rotational Speed [rpm] 600
Cylinder bore [mm] 220
Piston Stroke [mm] 350
Compression Ratio [-] 18,5
Fuel consumption at maximum logétg/h] 7,33
Specific fuel consumption at maximum lodd/kWh] 277,6

" — maximum load considered during laboratory téste description below)

The fundamental stage of our research consistsOobldservations. We loaded the tested
engine in a range from 25% to 65% of its nominadievith two rotational speeds namely 200 and
360 rpm. The larger load of the engine was notiptesbecause of the admissible load of the used
water brake and too small efficiency of the Robtswer. The measurements have been carried
out for the working engine with:

— its constant rotational speed and changeable lé@ads constant value of air/fuel
equivalence ratio,
— its constant rotational speed and load for charigeattues of air/fuel equivalence ratio.

In this research, the air/fuel equivalence ratjo§@s understood as a ratio of a mass amount of
air delivered to a cylinder to amount of air neeegdo combustion of a fuel dose injected to this
cylinder whereas the changeable loads realized &gns of using a water brake. Values of the



engine loadsN]) described like percent of nominal momentum &hd rotational speeds)(are
presented in Tab.2.

During our research, the engine has been suppliedhe diesel fuel with its known
specification obtained from its producer (Lotos @iesel EKO Z with density at 15°C equal

829,6 kg/ni).
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Fig.1. A schematic diagram of the laboratory stafhd: a recording computer, 2 — A/C converter, 3iblrer
flexible couplings, 4 — Roots’ blower, 5 — a fregiter pump, 6 — an electronic indicator of pregsut — fuel
installation, 8 — a heat exchanger

Tab.2. Values of the tested engine loads and miatispeeds

No. 1 2 3 4 5 6 7 8 9
M [% of M,] 65 60 55 50 45 40 35 30 25
n [rpm] 200
No. 10 11 12 13 14 15 16 17 18
M [% of M,] 65 60 55 50 45 40 35 30 25
n [rpm] 360

5. The results of the investigations

The learning processes of ANNs were prepared inI$AICA 7.1 computer code. The root
mean square errors for best ANNs after cross Madidafor all considered networks were
presented in Fig.2.

According to presented in Fig.2 results, the MLRuvoeks have littlest root mean square errors
than RBF networks. Increasing of number of neunansidden layer cause decrease considered
error, but increasing number of neurons in the édthyer of RBF network over 70 neurons
decreases the error only imperceptibly. The changf the neurons number in the MLP hidden
layer between 10 and 20 neurons doesn't influenggrovement of the quality of modeling
significantly. The values of the maximum errors &tirconsidered ANNs are presented in Fig.3.
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Results, presented in Fig.3. shows, that only MUP networks estimate the NOx emission in
errors not excided 10% for all considered pointsoafl the engine. There are the MLP networks
with 10, 15, 16, and 17 neurons in the hidden layercording to these considerations the
presented MLP networks are sufficient to NOx emisdrom engine with accuracy specified in
Technical Code.

5. Conclusions

This paper describes the method of ANN preparin@x emission estimation from the ship
diesel engine during onboard working. The presemsdlts of this work enable the following
conclusions to be drawn:

— The possibility of the enter data collecting to t#@x formation model in the ship engine

exists without the installation of the additionaasuring equipment in the engine room.

— Four MLP networks with 10, 15, 16, and 17 neureonthe hidden layer successful estimate

the NOx emission with error not exceeded 10% foc@hsidered points of the engine load.

— The preparing of artificial neural network with cithered enter data is sufficient to NOx

emission estimation from the ship diesel enginenvéier the network was learned only for
one engine and more studies are necessary.
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