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Abstract 

The paper presents the preliminary investigations of nitric oxides (NOx) estimation from marine two-stroke 
engines. The Annex VI to Marpol Convention enforce to ship-owners necessity of periodical direct measurements of 
the NOx emission from the ship engines. It is very expensive procedure but with a low accuracy. Presented 
investigations show the possibility of estimation the NOx emission without direct measurements but using the artificial 
neural network (ANN). The paper presents method of choice the input data influenced on NOx emission and 
configuration of ANN and effects of calculations. The input data poses 15 parameters of engine working, influencing 
on NOx emission. The output data, necessary to learning the network, were NOx concentration in engine exhaust 
gases. We take into account two types of ANN; the 3-layer perceptron (MLP) with number of neurons in the hidden 
layer from 10 to 20 and the radial basis function neural network (RBF) with number of neurons in the hidden layer 
from 10 to 80. The input, validation and verification data was obtained from laboratory tests. After procedure of 
network configuration, the chosen ANN was learned by back propagation and conjugate gradient methods. During 
this operation the weights of neurons were changed to minimize the root mean square error. We obtained four ANN’s, 
which allow us to estimate the NOx emission from laboratory engine with accuracy, comparable with Annex VI 
regulations. 
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1. Introduction  

The nitric oxides (NOx) contained in exhaust gases, emitted from ship engines causes’ high 
level of health hazard. To prevent of sea environment from this pollutant International Maritime 
Organization introduced Annex VI to MARPOL 73/78 convention in 1997. This Annex forces 
ship owners to limit nitric oxides emission from ship engines. The allowable level of this emission 
is defined in NOx Technical Code [11]. According to this Code, every introduced to operation 
onboard engines above 130 [kW] are obligated to have the valid certificate confirming the 
acceptable NOx emission. If ship engines are subjected some alterations during their operation 
period, they will have to extend such a certificate. Its prolonging consists in checking of 
parameters and structural parts of the engine influencing the NOx emission. Changes of engine 
structural parameters could entail the necessity of carrying out the direct onboard measurements of 
the NOx emission. Usually, the standard equipped engine rooms have not installed any appropriate 
analyzer of exhaust gases. Therefore, such direct measurements lead to significant expenses for 
ship owners. Moreover, these measurements have to be carried out for strictly determined points of 
engine load. Such situation can also cause to withdrawing the ship with operation in order to 
perform these measurements, which are additionally not precise. According to the NOx Technical 
Code regulations, we can apply the simplified method during the onboard measurements. These 
regulations allow us to overcome the acceptable levels of emission even about 10% comparing 



with methods using on the shore. For the heavy fuel, these regulations allow to exceed this limit 
even up to 15%.  

In order to make these regulations more applicable, many research centers work on alternative 
methods of nitric oxides estimations from onboard operated diesel engines. Kyrtatos et al. [16] 
proposes the “software sensor for exhaust emissions estimation“ based on multi-zone 
thermochemical model of nitric oxides formation in combustion chamber of the engine. This 
sensor includes only Zeldovicz’s model [10] of nitric oxides creation. Developing this method of 
nitric oxides estimation the mono-zone multi-component, thermochemical model was proposed 
[14]. It’s based on Konnov’s model [13] and consists of 724 reactions between 83 chemical 
species. The conclusions formulated after researches on this model, shows enough accuracy of 
nitric oxides estimation only for one engine. Moreover, the complexity of nitric oxides formation 
in combustion chamber of engine required very expensive computational power, not onboard 
accessible. According to this, it’s necessary finding of the appropriate method, allowing to the 
lowering of the costs of modeling without limiting her accuracy. Such method can be an 
approximation of the NOx composition model, possible to calculation by the PC class computer. 
The useful and universal approximator, being suitable to this aim, is the artificial neuronal network 
(ANN). Proposed by Werbos method of ANN learning [29], called the back propagation method, 
allows using the ANN in the various fields of knowledge. Wang et al. [28], Oladsine et al. [20] and 
Hafner et al. [8] uses ANN to control parameters of the piston engines and Stephan et al. [25] to 
control the power plant. Yang et al. [30] and Ramadhas et al. [22] proposes use ANNs to modeling 
of cetane number for blended fuels and Lee et al. [17] use ANN to modeling of fuel spray 
penetration in combustion chamber of the engine. The ANN was also applied to the lowering of 
the costs of the modeling of the combustion process reactions [3], [5], [12], [24], [26] specific fuel 
consumptions of the engine [23] and the temperature of the combustion process [21]. 

Presented works shows, that using the ANNs is effective and not expensive alternative to 
modeling of the combustion process parameters. According to this situation we would like to 
propose a method of the NOx estimation from the onboard diesel engine based on the 
measurements of working engine parameters like pressures, temperatures, etc. Moreover, we 
assume that these parameters measured in the standard equipped engine room are sufficient for 
developing the mentioned method. This, in turn, requires developing the appropriate model 
connecting these parameters into a function allowing for assessing a level of the NOx emission. In 
order to reduce the high cost of modeling the artificial neural network is proposed.  
 
2. Formation of the NOx in combustion chamber of the engine  

The main reason of nitric oxides formation is reactions of the nitrogen oxidization in 
environment of high temperature and high pressure in a combustion chamber. The nitrogen 
oxidized in these reactions comes from air and fuel injected to a cylinder. The process of the 
nitrogen oxidation is reversible. Unfortunately, the quickness of reactions opposite to the oxidation 
is too low in conditions of the combustion chamber. It causes to release some parts of the nitric 
oxides to atmosphere during the scavenging process of a cylinder. Long-term investigations of the 
NOx formation carried out during a combustion process of various flammable mixtures bring into 
being many mechanisms allowing for estimating the amount of the emitted NOx. Basing on 
thermal mechanism [9], we can state that the most important parameter of this process is its 
temperature. This statement is supported by results of experimental investigations presented in [2]. 
According to conclusions contained in [7], the second important parameter is pressure of causing 
for decreasing of NOx molar concentration. Investigations of Lyle and al. [18], shows us the 
considerable influence of relation between the molar concentration of fuel and air on the NOx 
emission level. According to results of these studies, the prompt mechanism predominates in rich 
mixtures. After exceeding a stoichiometric air concentration in a mixture, the rapid growth of the 



NOx concentration occurs due to a thermal mechanism domination. However, the further increase 
of the air concentration causes for decreasing of the NOx concentration due to decreasing the 
combustion process temperature. Kuo [15] gives also dependences between the fuel composition 
and burning velocity, and the NOx concentration. According to results, a fuel molecular structure 
depends on burning the velocity and NOx concentration, but this dependence is ambiguous. 

According to these considerations the most important parameters influenced on NOx formation 
are: 

− Composition of burned mixture in the combustion chamber, 
− Time of combustion, 
− Pressure of combustion, 
− Temperature of combustion. 

Values of these parameters are changed during the combustion process in the engine cylinder. 
Moreover, presented parameters couldn’t be measured during sea operation of the engine.  It 
means that estimation of the NOx emission requires measurement some another parameters of the 
engine working influencing on temperature, pressure, time of combustion and composition of the 
combusted mixture. The author’s research demonstrates [14], that measurement of the engine 
parameters during the sea operation conditions, are enough to the NOx emission estimation. The 
prediction of NOx emission by the direct calculation of NOx formation during combustion process 
is very expensive and difficult process [1] [4] [6], [13], requiring large computational power not 
attainable onboard. In this situation the direct calculation of the NOx formation to estimation of 
the level of the emission onboard is problematic. On the other hand properly learned neural 
network, may be sufficient tool to assess the level of the NOx emissions. 
 
3. The preparing of the ANN’s 

According to the ANN theory [19] the enter data inserted to the ANN model has to comply 
appropriate requirements. The most important is the mutual independence of the enter data. It 
means that chosen entered data couldn’t influence each other. 

The earlier considerations show that the enter data to the ANN must represent the parameters 
influenced on NOx formation in the combustion chamber. The composition of the burned mixture 
in the combustion chamber may to be estimated by the parameters of the air and fuel at the inlet to 
the engine and the parameters of the injection system. We choose the following parameters: 
temperature and humidity of the scavenging air and a fuel consumption of the engine. Dependence 
between quantity of fuel and air in the combustion chamber is represented by an air/fuel ratio. 
Time of combustion is represented in enter data by speed of the engine and pressure of combustion 
is represented by the mean cylinder pressure, the maximum cylinder pressure and the crankshaft 
position at the maximum cylinder pressure. Temperature of the combustion process is represented 
in enter data by parameters of the injection process; the maximum injection pressure, the 
crankshaft position at the maximum injection pressure and temperature of the fuel before the 
injecting pump and temperature of the exhaust gas. The cooling system of the engine influences on 
temperature of combustion process that has way the pressure and temperatures in the inlet and 
outlet of the cooling system were added to the enter data. According to these considerations 15 
independent parameters of the combustion process are taken like the enter data to ANN. 

The problem of NOx emission estimation from the diesel engine is classified as regressive 
problem. General two types of ANN may to be used to solve this class of problems. The first, most 
popular, network is multilayer perceptron (MLP) [23] and the second the radial basis function 
network (RBF) [27]. 

During the investigations both, the MLP and RBF networks are considered. The networks 
consist of 15 input neurons in input layer for 15 enter data, one neuron in output layer for NOx 
emission estimation and neurons in one hidden layer. The number of neurons in the hidden layer 



was changed from 10 to 20 for MLP network and from 10 to 80 in RBF network. The input, 
validate, and the test data were collected during direct measurements on two stroke, one cylinder, 
loop scavenged, laboratory engine. The 212 sets of data are collected to teaching the networks 
after measurements. The cross validation was used because of a small quantity of the data sets. 
During the teaching process 162 data sets was randomly assigned as the teaching data, 20 to 
validation the networks, while the remaining 30 was employed for verification the performance of 
the ANN prediction. The logistic function as an activation function was used and the data sets 
before using were standardized to values from 0 to 1. The learning rate was set on 0,1. 

The teaching process for all considered ANNs consists of few stages: 
– weights of all neurons were randomly assigned, 
– inputs were presented to the input layer, and the output was calculated, 
– weights were calculated by minimizing the error in back propagation process, this process 

was repeated to assign all data sets, 
– data sets were mixed and the second epoch was started, 
– after 200 epochs weights were calculated by minimizing the error in the conjugate gradient 

method by 500 epochs, 
– the cross validation was used and repeated 5 times, 

 
4. The description of the laboratory test  

We have carried out the laboratory test using the engine L-22 installed in Gdynia Maritime 
University laboratory. It is a crosshead, single-cylinder, and two-stroke diesel engine with loop 
scavenging. Roots’ blower driven independently by an electric motor with an infinitely variable 
adjustment of rotational speed charges this engine. The tested engine is loaded by a water brake. 
Basic parameters of the L-22 engine are presented in Tab.1. and a schematic diagram of the 
laboratory stand is presented in Fig.1. 

The measuring equipment installed on the tested engine permitted on the continuous recording 
of the considered parameters of the engine with approximately 0,5 second samplings. 

Tab.1. Parameters of the test engine 

Nominal Power [kW] 73,5 
Rotational Speed [rpm] 600 
Cylinder bore [mm]  220 
Piston Stroke [mm] 350 
Compression Ratio [-] 18,5 

Fuel consumption at maximum load* [kg/h] 7,33 

Specific fuel consumption at maximum load* [g/kWh] 277,6 
* – maximum load considered during laboratory tests (see description below) 

 
The fundamental stage of our research consists of 10 observations.  We loaded the tested 

engine in a range from 25% to 65% of its nominal load with two rotational speeds namely 200 and 
360 rpm. The larger load of the engine was not possible because of the admissible load of the used 
water brake and too small efficiency of the Roots' blower. The measurements have been carried 
out for the working engine with: 

− its constant rotational speed and changeable loads for a constant value of air/fuel 
equivalence ratio, 

− its constant rotational speed and load for changeable values of air/fuel equivalence ratio. 
In this research, the air/fuel equivalence ratio [9] was understood as a ratio of a mass amount of 

air delivered to a cylinder to amount of air necessary to combustion of a fuel dose injected to this 
cylinder whereas the changeable loads realized by means of using a water brake. Values of the 



engine loads (M) described like percent of nominal momentum Mn and rotational speeds (n) are 
presented in Tab.2. 

During our research, the engine has been supplied by the diesel fuel with its known 
specification obtained from its producer (Lotos EuroDiesel EKO Z with density at 15ºC equal 
829,6 kg/m3). 

 
Fig.1. A schematic diagram of the laboratory stand: 1 – a recording computer, 2 – A/C converter, 3 – rubber 

flexible couplings, 4 – Roots’ blower, 5 – a  fresh water pump, 6 – an electronic indicator of pressure, 7 – fuel 
installation, 8 – a heat exchanger 

Tab.2. Values of the tested engine loads and rotational speeds 

No. 1 2 3 4 5 6 7 8 9 
M [% of Mn] 65 60 55 50 45 40 35 30 25 

n [rpm] 200 

No. 10 11 12 13 14 15 16 17 18 
M [% of Mn] 65 60 55 50 45 40 35 30 25 

n [rpm] 360 

 
5. The results of the investigations 

The learning processes of ANNs were prepared in STATISTICA 7.1 computer code. The root 
mean square errors for best ANNs after cross validation for all considered networks were 
presented in Fig.2. 

According to presented in Fig.2 results, the MLP networks have littlest root mean square errors 
than RBF networks. Increasing of number of neurons in hidden layer cause decrease considered 
error, but increasing number of neurons in the hidden layer of RBF network over 70 neurons 
decreases the error only imperceptibly.  The changing of the neurons number in the MLP hidden 
layer between 10 and 20 neurons doesn't influence improvement of the quality of modeling 
significantly. The values of the maximum errors for all considered ANNs are presented in Fig.3. 
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Fig.2. the root mean square error for all considered ANNs 
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Fig.3. the values of maximum errors for all considered ANNs 
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Results, presented in Fig.3. shows, that only four MLP networks estimate the NOx emission in 
errors not excided 10% for all considered points of load the engine. There are the MLP networks 
with 10, 15, 16, and 17 neurons in the hidden layer. According to these considerations the 
presented MLP networks are sufficient to NOx emission from engine with accuracy specified in 
Technical Code.  

 
5. Conclusions  

This paper describes the method of ANN preparing to NOx emission estimation from the ship 
diesel engine during onboard working. The presented results of this work enable the following 
conclusions to be drawn: 

− The possibility of the enter data collecting to the NOx formation model in the ship engine 
exists without the installation of the additional measuring equipment in the engine room. 

− Four MLP networks with 10, 15, 16, and 17 neurons in the hidden layer successful estimate 
the NOx emission with error not exceeded 10% for all considered points of the engine load. 

− The preparing of artificial neural network with considered enter data is sufficient to NOx 
emission estimation from the ship diesel engine. However the network was learned only for 
one engine and more studies are necessary. 
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