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Abstract

The intended aim of the paper is to present a lprabof reaching engineering maturity by a techniohject
being introduced into service and designed for gfmecy activities. These are objects and systemxiassd with
those of basic performance. Failures to the lattees are hazardous to safety. Models of availgbditalysis, in
particular of servicing by teams of specialists éidbeen based on the theory of Markov/semi-Markoegsses. The
method of analysis has been introduced using alsbligopter as an example.
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1. Introduction

The question of reaching engineering maturity géots newly introduced into service usually
consists in coming up to the nominal level of aafaiiity, starting however from the underrated
one.

The underrated level of availability results fromth higher failure rate and longer servicing
and repair times throughout initial stage of operatl phase. From this standpoint, particular
attention should be paid to emergency/rescue \ahichny ship-helicopter exemplifies such
objects.

When consideration is given to such technical dbjeprior to formulating a model of
availability estimation, some simplifying assumpscshould be made:

- all transitions from the statel]E to the statej 0 E show discrete nature (are described

with a discrete random variable),

- mean time of the object’s staying in the stétebefore transition thereof to the stgteis
described with a random number or function,

- both operational statés={1, 2 ... r} and duration thereatj are mutually independent, i.e.
they cannot occur simultaneously,

- all possible transitions can be described with peration/maintenance graph that does not
change its form throughout the time of examining pihoblem, i.eTo.

If the operational phase of these objects satiglighe above-mentioned assumptions, a model
of a Markov/semi-Markov process of some finite nembf states can prove a proper analytical
model.



2. A model to calculate functional availability oftechnical objects

2.1. Determination of boundary probabilities for the Markov chain

On the grounds of analyses of the operational plodseny technical object that performs
indivisible tasks (sea voyages, flights) within egemcy and rescue systems it has been found that
such an object can remain in one of the followitages:

S — being on duty (waiting for a task),
S — operating, and
S; — emergency object under refurbishment (beconeptaced with a capable one).

Furthermore, the following assumptions have beadero formulate a mathematical model of
the operational phase from the point of view ofiladity analysis:

- any technical object can remain at any time inganonly one of possible states,

- in the course of performing tasks, the objectsdafandom time instances,

- time needed for the object’s refurbishment (reptaeet with a capable one) is strictly

determined,

- duration of the procesk has been pre-set.

A diagraph representing the operational procegs (f is a representation thereof. There are
interrelations between all the states (they ‘comicate’ with each other), thus generating
a reducable chain [3, 4].

\ //‘beng on duty (waiting for a task)

S, - operating (performing a task)
S - refurbishment (replacement)

Fig. 1. A graph illustrating the technical objectiperation

Presented in Fig. 1 is a 3 x 3 square matrixaofsitions of the process; all transitions frora th
state’i’ to the statg§’ are possible for this matrix:

0 Py P
Mi=[pijlaxa= | P,y O Pas |- (1)
Ps; Py, O

Ergodic probabilitiegy; can be calculated from the boundary of the matfitransition inn
stepsM, =M, by means of solving either a system of linear &qna or an equivalent matrix
equation [3]:

ijj :Li[?o P; (n):Zpi P = M1T|_pj_|:|_pjj1 when ij =1, (2)
i J

where:



M, - transpose of the transition mathik;,
pi - boundary probability,

pj - probability of transition from stat€ to state }'.
O p21 p31
My (Pi)={ P O Py 3
P Ps O

According to both the relationshigvl; @p;1=[p;] and the normalisation condition
Z p; =1, in the matrix notation the boundary (ergodigyhzbilitiesp; are calculated according
i

to (4) and the system-normalisation condition (5):

0O Pn Pxul||P Py
MlT ( P; )={Pp O pg (P, =[P, |, 4)
Pz Pz O ] [Ps| [Ps

2P =1, (5)

or as the forms of linear equations (6):

P21 1P, + P31 L = Py
P2 [Py + Psp L3 = P,
Pus Py + Pas 0, = P5
Pt Pt ps=1

(6)

After having solved the system of equations (6§ fbllowing formulae to find boundary
probabilities are arrived at:

p, = (1_ Pro 0,1 = Pos LDy, [P + psz)J b, 7)
(p12 Ep31 + p32) Epl3
1
o = , ()
2 1+ 1- P2 Ep21 +1_ P12 Epzl - p23(p12 Epsl + p32)
P12 Epsl * P (p12 l:p31 + p32) Epl3
1- P12 Ele j
Py = ————— |[p,. )
: ( P12 EpSl * P ?

Table 1 gives estimates of probabilitgsthat the object remains in a particular state ¢ofan
a real operational process:



Tab.1. Probabilities pthat the object remains in particular operatiorsthtes

Sy St S S
S 0 0,91 0,09
S 0,95 0 0,05
S 0,5 0,5 0

After having substituted the assumed valuegjdfom Tab. 1 into eqgs (7) — (9), the boundary
probabilities for the Markov chain are arrived Rig( 2).

0,5
04
0,3
0,2
0,11

pl p2 p3
Fig. 2. Boundary probabilities for the Markov chain

2.2. Finding boundary probabilities for the Markov/semi-Markov process

Technical objects under operation are featuredutitrout their whole life cycles with
different times of performing servicing and/or repaFig. 3 shows characteristics of
changes in servicing time and of coming up to theaimal time.

tg (t) A

>

Fig. 3. Characteristics of changes in servicingdiand of coming up to the nominal time

Interval | — the time of learning, featured witklatively long and gradually decreasing
servicing and repair times. This is an effect ahew up to the engineering maturity in production
and operational phase, including the teaching/legrof the staff expected to provide new objects
introduced into service with maintenance (gettiry af errors in maintenance procedures and
techniques, acquiring new habits).

Interval 1l — a ‘plateau’ period, i.e. time of e operation/maintenance, in the course of
which the failure rate keeps constant or nearlystamt. It usually results from random failures and
errors made by servicing personnel.



For Interval | (Fig. 3), a model of the semi-Mavkgrocess might prove a proper mathematical
apparatus to describe operational phase. The serkeM process is a Markov process,
throughout which mean times of the emergency osjetaying in the stata’‘prior to transition
to the statej* are random functions of time.

In phase I, mean time of transition from the sw@iteefurbishmentt,, (t) to other states for

t = 0 reaches maximum and decreases down to reachetue time of refurbishment calculated in
Phase Il (Fig. 3). The time dependence can be ibdeslcwith the exponential function as:

ty (t) = (0 —tay1) Cexp /7 + t3 (10)

t, (t) - time of transition from the state of refurbishmh® other states within Interval |,
t,, - assumed maximum time of performing the refunmsht,
ts, - the expected value of time of performing theirkishment in phase Il (Fig. 3).

Operational data show that the maximum time ofrfle®’ (t.) how to provide new
emergency objects with servicing amounts to 7 d8ysce usuallyt, = tgoe, the learning
constant can be found (Fig. 3):

FOZFO) g9 tnerefore, '~ 1o - gg, (11)

F(0) - F(e) ty — Iy

i
¢ T =01, 12)
t
/7 =In10 02303, (13)
r= LR 304 = 3 days. (14)
2303 2303

Hence, the form of time dependence for the learpemipd is as follows:

t

£, (t) = 2007 3 +10, (15)

where:

t,, -random function of time of staying in the stateefurbishment at stage I,
t={0,1,...,7} -random variable of physical time of ‘learning’ messd with days.

Mean times of staying in the state of refurbishmarg what is arrived at after having
substituted possible valuestah eq (15) for stage I. Then, transition ratesfatend according to
(18) and (19) and substituted in the system of eojs (21); values of probabilitigs (Tab. 2) are
calculated for variable rates of transitidg from the state of refurbishment to other states.



Tab.2. Expected values of time of staying in thtegif refurbishment for stage |

t [days] £ (1) Ay (1) py (1) Py (1) Ps (t)

0 30 44 0,735216 0,248457 0,016327

1 24,3804 54,1427 0,737471 0,249219 0,013309

2 20,3397 64,8975 0,739102 0,24997 0,011128

3 17,3605 76,0368 0,740309 0,250178 0,009513

4 15,2764 86,4077 0,741155 0,250464 0,008381

5 13,8053 95,6161 0,741754 0,250666 0,00758

6 12,7089 103,88 0,742138 0,250797 0,0069¢

7 11,9477 110,4824 0,742511 0,250927 0,0065467

00 10 132 0,7427 0,25081 0,00552
at:

ty (1) =15, (1) +5,(1) (16)

where:

t, (t) - function of time of refurbishment at stage |,
t,,(t) - function of time of refurbishment prior to tsition to the state of being on duty,
t.,(t) - function of time of refurbishment prior to tsition to the state of operation.

Figs 4 — 6 illustrate probabilitigg(t) throughout the period of learning.
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Fig. 4. Values of probabilities i) for the semi-Markov process, the state of baingluty
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Figs 4 and 5 prove that for both the state of beimgluty and the state of performing the task,
respectively, values of probabilitigs andp, gradually increase in the real time, whereas lier t
state of refurbishment decrease is observed (frig. 6

0.016 %0.016327

ps(t)
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Fig. 6. Values of probabilitiessft) for the state of refurbishment

As time passes by, i.e. time for progress in liegmow to service new devices/systems, the
number of errors made by the staff who operateideovmaintenance of objects recently
introduced into service decreases, which meansrlawe lower probability that a failure occurs
due to incorrect operational use and maintenance.

K, = P+ Pl _ 5983 0993,
z p; (t)
j=1

For stage Il (Fig. 3) featured with constant faluates it has been assumed that the Markov
processX(t) of finite phase spac® ={S,;, $, S} is a model of operating/servicing technical
objects.

If:

X(t) = 1, at time instancethe object is in the state of being on duty (wagtior a task),
X(t) = 2, at time instancethe object is in the state of performing a task,
X(t) = 3, at time instancethe object is in the state of refurbishment.

The stochastic process(t), i.e. the Markov process of some finite set otest& can be
completely determined by means of the following:
- initial distribution of the proces%(t) = [1,0,0],
- matrix M of probabilities of changes of the states for therlhdv chain,
- matrix of intensities of transitions of the process.

TheA matrix has been built on the basis of the digrstptwn in Fig. 1:

- /111 /]12 /]13
N=| Ay Ay Ay | (17)
/131 /‘32 - /]33



Intensities A; and A; of the statesS, — & for the Markov process under consideration,

calculated by test, have been given in Table 3.

Tab. 3. Matrix of intensities of transitions whilperating a technical object throughout stage Il

)\ij/)\ii )\1 )\2 )\3

A1 -34,879 32,154 132

A2 100,32 -98,0392 66

As 132 132 -132,15

with A; calculated according to the relationship:
1
Ay =—, (18)

f;

where:

f; - mean time of staying in the stateefore transition to the stgte

Diagonal rates have been found as:

1 1

- 1
ii i ti- ni. Eﬂi- 1
AR L
jl].]ij ij
n n

where:

«; - frequency of transitions from the state the state,

A. - rate of transitions from the statto the statg.

i

According to the theory of Markov processes, fajoelic processes the matrix equations are
satisfied [3]:

A Op;1=0, (20)
where:

N = [Aj] - matrix of rates for diagonal; and non-diagonal elemems.

According to eq (20) for the matrix notation witietnormalisation condition, the following is
arrived at:

- /‘11 /]21 /]31 P, 0
A —Aym gy P, [=|0], (21)
/]13 /]23 - /]33 Ps 0



— A Oy + Ay O, + A5 O3 =0
Ao Oy = Ay Oy + A3, 3 =0
A3 0Py + Ap3 [P, = Agz Lp; =0 (22)

3
z p=1
i=1

After having solved the above-shown system of eguoatthe following formulae for
boundary probabilities of the Markov process areved at:

A (A, A, + A, A A
) :{ 21(Ay Qg + 45, L) +i} Op,, (23)
Ap(Ay Dy, + A, M) Ay

A AL, + A
p2 :|: 11 l] 31 32) :|l:p3, (24)
/]11 D122 _/]12 D121

_ 1
/111 + /131 + /]21 mu q/]sl + /]32) + /111 Wal + /]32)
/‘11 /]11(/111 Dﬂzz _/112 EH21) /‘11 Dﬂzz _/112 le

(25)

Ps

With values taken from Tab. 3 and substituted iefgs (23) — (25), boundary
probabilities (Fig. 7) are obtained for the Markmocess (stage ).

0,8
0,61
p; 04 0,0665
0,2 0,00552 Markov chain
0 : Markov process
s1 s2 S3

Fig.7. Boundary probabilities pj at stage Il for amergency object

The calculated rate of functional availability &iage Il is:



K“ - pl(g) + pZ(t) = 0’993

Z p; (t)
=1

3. Conclusion

The paper has been intended to introduce a methdetermining functional availability of
technical objects introduced into service, in maifar, within rescue systems. The required
characteristics of such objects are availability amadiness to perform tasks that arise at random
time instances during the duty. Hence, the objestglly perform tasks, or keep waiting in the fit-
for-use state.

A three-state Markov/semi-Markov model has beaduer analysis; the object’s lifetime has
been divided into three stages. The first one:olgects of a new type recently introduced into
service, the rate of failures due to servicing srigradually decreases. The second one is the time
of constant failure rate and constant functionalilability. For the first stage (Fig. 3) the semi-
Markov process has been assumed., for which mesas tof refurbishment have been described
with the exponential function. The second stageleesn described with the Markov process. The
effect is that, on the basis of data, rates of tional availability have been calculated, according
to the following relationship:

K = pl(;:) +P()

Z p; (t)
j=1

The rates for particular stages are as follows:
1) stage I, for which some increase in the rate oflabitity K, = 0.983+ 0.993 is observed;
this results from the improvement in quality of foeming services,
2) stage Il of constant availabilitg,;, = 0.993, in the course of which constant erroesnaade
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