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Abstract

This paper concerns the derivation of the stochastic modified Reynolds equations describing the hydrodynamic
pressure for non-Newtonian, viscoelastic, lubricant inside the curvilinear orthogonal (spherical, conical, cylindrical,
parabolic ) slide bearing. Non- isothermal, unsteady and random flow conditions and thermal deformations of the
bearing and its bearing sleeve are taken into account. This problem finds application in ship power plants, electric

locomotive designing, and precision engineering. In particular case are determined pressure and capacity
distributionsin spherical bearing.
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1. Introduction and basic equations

This paper presents the general analysis of thaeimée of unsteady non isothermal flow of,
visco-elastic oil in magnetic field on the pressunathin deformed curvilinear bearing gaps
between two rotational surfaces in random condsti@ee Fig.1).

The flow analysis of the viscoelastic lubricantllvide performed by means of the Helmholtz
Equation and the equations of continuity, motiod anergy Ref.[1],[2],[3]:

O%H = e 0°HIot?, 1)

div(ov)=0, (2)

DivS+ (N )H= pdvidt, (3)
div(xgradT)+div(vS) ~vDivS—uT =dH/dt= odc, T/dk, (4)

where:

v - lubricant velocity vector,

T - temperature of lubricant,

N - magnetization vector of lubricant,

H - magnetic intensity vector,

= - first derivative of the magnetization vector wrespect to the temperature,
c, - specific heat,

M,He - magnetic and electric permeability coefficientuddricant,

S - stress tensor in the lubricant,



OO - Del vector,
K - thermal conductivity coefficient of the lubrita

The magnetic susceptibility coefficient of the lalint has constant scalar value. The relationship
between the stress tensg# | 1; || and the strain Rivlin-Ericksen tensbr, Azin the lubricant is
as follows [3]:

S= I+ At aAA+ A, (5)

where:

1=1] & || - unit tensor,
j - Kronecker delta.

Symbolsa and3 denote empirical coefficients of lubricant, whidscribes viscoelastic properties
of the fluid in Pa% units. Lubricant dynamic viscosity depends on negigninduction and
temperature, i.e)=n(H,T).

The stationary equation of motion and heat equoatio the elastic bearing sleeve have the
following form:

DivS +u (N O)H = p 02U/ dt*+ (8 To)gradT (6)
div(kgradT*)=(g, p) 0T /0 t+ & d(divu)d t, (7)
where
Q(E?’K X(aT) To,

K - bulk modulus,

T, - value of characteristic temperature,

N" - magnetization intensity,

H" - vector ofmagnetic intensity vector in elasbody,

[ - magnetic permeability coefficient of hyper-eladiady.

The following symbolsio” (c,)’, ¥ (ar)” denote: density, specific heat, thermal condustivi
linear expansion coefficient for elastic body miatlerespectively. We take into account the
Duhamel-Neumann relations between the comporgntsf the stress tens& in the elastic body
and the components; of the strain tensor [1]. Moreover we consideraistdisplacement
dependencies [2] fous, Ug, Ugg - components of displacement vectoof elastic body. The
characteristic dimensional height of elastic lageis about thousand times smaller than radius of
body curvature and other quantities occurring i@ fiction region. The total dimensional gap
height has the following form:

Er =€p tUgotUgop, (8)
where:

& - primary height of the gap,

Uz, - dimensional temperature and pressure displacemeydp height direction of the external
elastic layer surface being in contact with therildnt,

Ugxs - dimensional magnetic displacement in gap hedjtection of the external elastic layer
surface being in contact with the lubricant.
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Fig. 1. Side bearing geometries: a) cylindrical surface, b) cylindrical bearing gap, c) spherical surface,
d) conical surface, wherex=a3, y=, =



The system of Egs.(1), (2), (3), (4), (6), (7) bas following unknownsvy, Vg, Ve — three
dimensional components of lubricant velocity vedtothree curvilinear, orthogonal dimensional
g, O, Osq directions,p - hydrodynamic dimensional pressufie; dimensionaltemperature in
lubricant, T* - dimensional temperature in the superficial layethe sleeve body ang,, Ua, Ugs
three components displacements of displacemenbivacin elastic body. Symbadry indicates
circumferential direction in each coordinate systBn example¢ in cylindrical or spherical
bearings. Symbolr,y indicates gap height direction for example r idindrical or spherical
bearings. Symbotry indicates longitudinal direction in each coordealstem for examplein
cylindrical and# in spherical ones. Hence in cylindrical and splarmoordinates we have:
(Va1, Vao, Vag)= (Vg, Viy V2), (Var Vo, Vag)= (Vg Vi, V).

2. Estimation of hydrodynamic equations

In order to simplify the boundary conditions farbticant flow equations, we introduce
following dimensionless components of velocity wecin the circumferential, radial and
longitudinal directionsvy, V,, V3 respectively. And, the dimensionless componentsnafinetic
induction vector, magnetization vector, magnetiemsity vector, have here the following form:
B1,B2,B3; N1,N2,N3; Hi,Ho,Hgz, respectively and they depend on the dimensionlagablesa; and
a3. Dimensionless components of displacement vectdinendimensionless variablésy, a,, as)
have the formuy, up, us. SymbolsTiy, pi, t1, /71, K1, hyp denote dimensionless temperature,
dimensionless pressure, time, dimensionless viggosiimensionless thermal conductivity
coefficient and dimensionless gap height, respelstiBetween dimensional and dimensionless
guantities we have following relationship [1], [3]:

P=RP1, Va1=UV1, Va2=PUVy, Vaz=WV3, T=To+BIToT1, N=NdN1, K=KoK1, Ep=EEp1, Ua2=EUp, (9)

a2=R(1+Pay), as=R a3, a1=Ras. (10)

We denote: R - radius of the curvaturerindirection,R - radius of the curvature ims direction or
length of the bearing of cylindrical bearing=«R surface linear dimension velocity im;
direction, W=U/L; - surface linear dimension velocity im; direction, L;=R'/R, ¢ - average
dimensional gap heighty - angular journal velocity,Bo=gHo, Po=ao/(f, @W=dR. Other
dimensional characteristic values are distinguidhgedymbol (0) in lower index namelyp,, o,
Po, Ho, To, No, to. We determine the quantities: dimensionless radedrance, dimensionless
length, Magnetic, Brinkman, Reynolds, Strouhal, awd Deborah Numbers, in the following
form, respectively:

* 2
p= D10‘3,|_155,Rf =NoBy g U7
R R pO KOTO
(11)
Re=Y%o g = R p AU BE/J’U ,
o Ut, R TR

where:

0sD,s1, 0sDgs1, 0sQg =BrTyrsl,
or - dimensional coefficient which describes the iafiae of temperature on oil viscosity.



3. Boundary conditions with random effects

The lubricant flow in bearing gap is generatedhgyrotation of a cylindrical spherical, conical,
or parabolic journal. Bearing sleeve is motionléssnce the boundary conditions for the lubricant
velocity components have the form:

vi=h; for a»=0, v;=0 for a,=é&r,
V,=0 for a»=0, v,=0 for a»=e&mn, (12)
vs=0 for a,=0, w=0 for a,=€t,

where

€11 =€p1 tUor1tUo2s,
h; - Lame coefficient.

In cylindrical and spherical coordinates the disienless oil velocity componen(sy,vs,Vs)
have the dimensional form:vf,Vee,Ves)=Vg Vi Vo), (Var,Vez,Vas)= (Vg Vi V). Hence the first
dimensionless condition (12.1) in cylindrioggh=1) and sphericalhg=sing) coordinateshas the
following dimensional formsv= aR for a»4=0, v=0 for axq= & andv,= aRsind for a,¢=0, v,=0
for a,g=&r. Symbol R denotes radius of cylindrical of spharipurnal and symbolo denotes
angular velocity of cylindrical journal and sphailigournal in circumferential direction.
Dimensionless temperature distribution along theribg gap has the constant dimensionless value
fi=1 on the journal surface and on the sleeve surtad®nges into the forfp:(a1,as). Hence:

T (0g,02,03)=1 for a,=0,
(13)
T (01,02,03)= fp1(a1,03) for oo=ger.

Heat flux is transferred from the journal (rotatbmearing surface) into the lubricant, hence we
obtain boundary condition in the following form:
0T1 _

— == for a- =0. 14
dary Oc1 2 (14)

For free heat exchange between the journal andchriirand by virtue of Newton-Fourier law,
then the dimensionless heat flux obtains the fahgworm:

£
Oc = Z—Afll (15)
KO
where:

( - heat transfer coefficient,
Af; - dimensionless difference of temperature betwemurnpl temperature and ambient oil
temperature.



By using the optimal functioh of probability density distribution for the stochi@ gap changes
caused by the roughness, then the mean valueabffitat thicknessE(er;) and mean the value of
pressure functioi(p,o) are presented by virtue of the expectancy openmatohe following form:

EQ= [(D)xF(3)dd,, 01:%:0,375,

2

5
o
1--L |  for-c <d <+c,
f(51>s( cf] AT

0 for |dy>cy,

(16)

where symbolc;=1,353515 denotes the half total range of random variablghef thin layer
thickness for normal hip joint. Symboi=0,37539 denotes the dimensionless standard deviation.

4. Particular solution of non-isothermal problem

Now we consider a particular case of the systesgahtions (1)-(4) in curvilinear coordinates
for steady flow, various viscosity,(a1,a2,as), constant thermal conductivity coefficiekt=1,
and Newtonian flow without magnetic effects, wheeatrifugal forces and convection forces are
neglected andkRey Sr<<1, 0<Ds3r<<1, 0<Reyx<1, 0<Gz<<1).

The particular dimensionless solution of the eperquation (4) under boundary conditions
(12), (13), (14) has the following form:

e ov av. )
Ty(ay,05,03)=1-0,0, - jj’h( 1} Lz( 3} da,da,, (17)

oa, oa

0<01<2104, 0<64<1, hy1<0s<bgy, OSG2S€T15€p1+U02+UozB, S0L/ET1, €T1=8T1(G1,G3), Nni- const.

Dimensionless temperature on the internal sleesfaihas the following form:

1 a 2
o ov ov.
for(a1,03) =Ty(a1,0, = &r1,03) = 1= 061 — J- J-’hl(aal] + Lz(a 3] ]dazdaz (18)
2

where:
O<a1<210, 0<61<1, by1<os<bg;.

For the rotational journal we have=hy(a3), hs=hs(as). Solutions of the partial differential
equations (3) under the boundary conditions (12¢hhe following form [4], [5]:

vi(en,a,, 03)———A7 (1-A)hy, (19)

vs(ay.ay,03) = gipn (20)

1
hs dar



j adaz 2 a i g

A= A= [Z2da, - A [ “2day, (21)
Fidaz o'l o'l
o’h

where:
0<a1<218,, 0=6:<1, bn1<03<bsi, OSO<ETI= Ep1tUoritUoze, ET1=ET1(01, O3), N1(A1, O2,03).

Solutions of the continuity equations (15) undlee boundary conditions (12.2)=0 for a,=0
has the following form:

21 ov, 10/2 1 a(hv)
a,,a,,0,)=— ——*da, - 173 da,. 22
VZ( e 3) !;hl oa, 2 h1h3 0a, 2 (22)

We put the solutions (19), (20) in solution (22} ame take expected value of the both sides of the
equation using the expectancy operator E. If weosepsecond boundary condition (12.2) for
radial component of lubricant velocity ive=0 for a,=¢&rthen it is easy to see that the pressure
function p; in the curvilinear coordinatesy{, a», as) satisfies the following modified stochastic

Reynolds equation:
L1100 hop 0 | d Ta lda -
00'1 {IAIJ } L1 I‘baas I’baa' {.[AlJ } 6 l{E{E‘;'AEJdUZ E(ETl)}- (23)

If oil dynamic viscosity is constant in gap heiglection i.e.71(a1,a3), then:

1 6
hlaal

! 3 &T1
1
da da, - & —&r1- 24
A= =S Mzmmznzl (24)
Hence the stochastic Reynolds equation (23) temtieetfollowing form:
10 |:E(£':I?1) apl}_izi 0 {ﬁ E(‘fgl) ap1:|=6hl aE(ng)l (25)
hoa,| n O0a,| Lihoas|hy n 0Ja; oa,

For cylindrical bearing we haves=@ a»,=r1, as=z and dimensionless Lame coefficients are as
follows h;=hs=1, whereL;=b/R, b - bearing lengthR - radius of the journal. In this case the
stochastic Reynolds equation (23) has the form:

o [Elg) oo, 1 o [Eled)orcp)]_ o6ers) 26)
ol m Op | 50y m o0z op

where:
p1(h,z1), O=<¢< 2m, —1<7:<1, er1=€71(P1, 7).



For the spherical bearing we hawg= @ a,=r1, as=; and dimensionless Lame coefficients are as
follows: h;=sind;, hs=1, L;=1. In this case the dimensionless pressure functignin the
spherical coordinatd®,,) satisfies the modified Reynolds equation (25hm form:

10| E(er) 0(py) |, 9 | E(&71) OB(Py) g o |- gOE(ET) g 27
snd gl n,  dp | 05| m o8 o * o o

where:
Osgr 2B, 0<6<1, 718s9 <72

For the conical bearing we hawe= @ a,=y;, as=x; and dimensionless Lame coefficients are as
follows: h;=x,cosa, hs=1, L1=b /R, wherea - angle between conical surface and the planeoskc
section of the journak - the length of the cone generating lilRe; radius of the journal. In this
case the dimensionless pressure functipnnpthe conical coordinate@, yi, x1) satisfies the
modified Reynolds equation (25) in the form:

X1 cos’a (28)

10| E(e11) 0E(py) |, cos”a 0 | %E(e71) OE(py) | _ 5 OE(era)
X 0p| m op L2 0% m 0% o

where:
Osgx2m8, 0<6<1, 0 sx1<1, x=xb..

In parabolic bearing we have the non monotone génerline of the journal in length direction
For the conical bearing we hawes ga,=y:, as=x1 and dimensionless Lame coefficients are as
follows:

- b
h, = cos*(A.x, ), he:\/1+4/l§sin2(/ll)(l) cos( /X, ), /llELi %,HEEP, (29)
1

where:
R - the largest radius of the parabolic journal,

a - the smallest radius of the parabolic journal,
2b, - the bearing length.

In this case the dimensionless pressure fungon the conical coordinaté®, yi1, x1) satisfies the
modified Reynolds equation (25) in the followingrfo

) [E(e%)aE( m)}+ cos(y) 9| coslhn)  E(f)0E(py) |
09 m 09 | 121+48sn?(Nx) | J1+4Rsn2(Ay) T On
=6%‘:1)cos4(/ll)(l), |)(1|sz—;larccos\/% : (30)
where:

O_<§0<27791, 0<6 <1, xXi=as /R.

The dimensionless gap height depends on the variabde andas and consists of two parts:



&n=énd(nas)+ d(aas,é), (31)

whereeris denotes the total dimensionless nominal smoathabahe geometry of thin fluid layer.
This part of gap height contains dimensionlessembions of gap height caused by the hyper
elastic deformations. Symbad\ denotes the dimensionless random part of changgapheight
resulting from the vibrations, unsteady loading audface roughness and asperities measured
from the nominal mean leveSymbol ¢ describes the random variable, which charactetizes
roughness arrangement.

Using the probability function (31), then aftalaulations we obtain:

(&)= ftenswa)f(al)dq:em
—C

(32)
6

E(ef1)= [ (eris+ 1) F(01)ddy = 1 + 07erss.
-G

5. Conclusions
The main achievements of this paper are the hydidic pressure derivations for slide
bearing journals in arbitrary curvilinear orthogbrn@oordinates and in particular case for

cylindrical, spherical, conical, parabolic bearimgth random conditions during the lubrication.

Acknowledgement
The present research is financially supported witheé frame of the TOK—-FP6, MTKD-CT-2004-517226.

References

[1] Wierzcholski, K.,Analytical ssimulations of deformations for journal bearing gap, Proc. of
Third Inter. Congress on Thermal Stresses, V@hpl391-394, Cracow 1999.

[2] Wierzcholski, K.,Non Isothermal Lubrication for Viscoelastic Ferromagnetic Qils, Proc. of
Thermal Stresses, Fourth Inter. Congress on TheBtnasses, pp. 613-616, Osaka 2001.

[3] Wierzcholski, K.,Ferromagnetic Turbulent Lubrication for Thermoelasticity Deformations of
Bearing Gap, Proc. of Thermal Stresses, The Fifth Inter. Cesgon Thermal Stresses, WA4-
3, pp. WA4-3-1- WAA4-3-4, Blacksburg, Virginia US®03.

[4] Wierzcholski, K., TheMethod of Solving of the System of non-Linear Differential Equations
for non-Isothermic Laminar non-Newtonian Flow in the Thin Layer Between Two Certain
Surfaces, (in Polish), Scientific Papers of the Institute Machine Design and Operation
Studies and ResearciThe boundary integral equation method in fluid mechanics, Technical
University of Wroctaw, Nr 59, Ser. Nr 26, pp. 13414, Wroctaw 1993.

[5] Wierzcholski, K.,Contribution to the analytical solutions of non linear basic equations for
ferrolubricant flow in a film between two non rotational surfaces, 7-th International
Symposium on System Modelling Control, Polish Cyle¢ical Society, Vol. 2, pp. 286-291,
Zakopane 1993.



